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ABSTRACT

Many organisms exchange small RNAs (sRNAs) dur-
ing their interactions, that can target or bolster de-
fense strategies in host–pathogen systems. Cur-
rent sRNA-Seq technology can determine the sRNAs
present in any symbiotic system, but there are very
few bioinformatic tools available to interpret the re-
sults. We show that one of the biggest challenges
comes from sequences that map equally well to the
genomes of both interacting organisms. This arises
due to the small size of the sRNAs compared to
large genomes, and because a large portion of se-
quenced sRNAs come from genomic regions that
encode highly conserved miRNAs, rRNAs or tRNAs.
Here, we present strategies to disentangle sRNA-Seq
data from samples of communicating organisms, de-
veloped using diverse plant and animal species that
are known to receive or exchange RNA with their
symbionts. We show that sequence assembly, both
de novo and genome-guided, can be used for these
sRNA-Seq data, greatly reducing the ambiguity of
mapping reads. Even confidently mapped sequences
can be misleading, so we further demonstrate the use
of differential expression strategies to determine true
parasite-derived sRNAs within host cells. We validate
our methods on new experiments designed to probe
the nature of the extracellular vesicle sRNAs from the
parasitic nematode Heligmosomoides bakeri that get
into mouse intestinal epithelial cells.

INTRODUCTION

Organisms do not live in isolation. The wonderful diversity
and complexity in life arises in part due to the contacts that

living beings have with their peers. Symbioses can have posi-
tive or negative consequences to one or both of the interact-
ing partners. These interactions are not only obvious at the
macroscopic level, but molecular exchanges underlie many
of them. Molecules moving between organisms of different
species include antibiotics, toxins, volatiles, sugars, amino
acids, amongst many others.

RNA is a molecule of incredible functional versatility,
participating in central cellular processes as messenger,
transfer and ribosomal RNA, but also in complex regula-
tory layers, from bacterial riboswitches to eukaryotic mi-
croRNAs (miRNAs). Yet, RNA has historically been re-
garded as an unsuitable molecule for exchanging signals be-
tween cells or organisms due to its instability, even though
it was proposed as an extracellular communicator several
decades ago (1).

Recent advances in sequencing technology have allowed
researchers to measure RNAs with unprecedented sensi-
tivity, leading to the surprising discovery that many small
RNAs (sRNAs), including miRNAs, are extracellular com-
ponents of human bodily fluids including blood, tears and
maternal milk (2–4). These extracellular RNAs can be pro-
tected from degradation through binding to proteins like
Argonaute and/or encapsulation within extracellular vesi-
cles (EVs) (5). Even so, a report that miRNAs from plant
food sources could be detected in the mammalian blood-
stream was quite surprising (6). These so-called ‘xenomiRs’
have been hotly debated, with a slight consensus arising that
miRNAs detected after passing through the vertebrate di-
gestive tract are probably contaminations or other molecu-
lar errors coming from index swapping during Illumina li-
brary preparation (7–10).

A key discovery came when Botrytis cinerea, a fungal
plant pathogen, was shown to secrete sRNAs that traffic
into plant cells to help block the host defense response
(11). Since then, we and others have shown that sRNAs are
detected in material exchanged between a large variety of
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pathogens and their hosts (12–18). The parasitic nematode
Heligmosomoides bakeri secretes sRNAs inside EVs into the
host gut environment, modulating the immune response of
mice (12). The parasitic plant Cuscuta campestris produces
miRNAs that travel into the host tissue eliciting a func-
tional silencing response in Arabidopsis (14). Plants can also
deliver their own sRNAs to strike back at their pathogens
(15,16). According to some recent reports, RNA exchange
may even occur between the different domains of life: the
bacterium Salmonella uses the host Argonaute to produce
miRNA-like RNA fragments that increase its survival (19),
and mammalian miRNAs present in the gut can be internal-
ized into bacteria and affect their growth thereby shaping
the microbiota (20). Although there has been more focus in
the literature on RNA released from pathogens, RNAs are
also being exchanged in other types of symbioses (20–24).
Although most of the focus in this area has been on very
small (∼22 nt) RNA species that can act through RNA in-
terference mechanisms, it is clear that larger RNAs can also
travel between cells. For example, full length Y-RNA like
molecules (∼70 nt in length) are abundant in the extracel-
lular vesicles of Heligmosomoides bakeri and can enter host
cells (12). Mammalian EVs also contain messenger RNAs
(mRNAs) that can shuttle between mammalian cells and
even be translated in the recipient cell (25). Recent work has
shown that fungal EVs contain mRNAs that can be trans-
lated in vitro (26); however there are no data yet to show that
imported parasite mRNAs make functional proteins inside
of host cells. Sequencing technologies are at a state where
detecting RNAs of different sizes, from all sorts of biologi-
cal material, even single cells, is accessible to most research
groups. Analysis of RNA sequencing data from interacting
organisms began a few years ago, with ‘Dual RNA-Seq’ ex-
periments that focused on transcriptional analyses of bacte-
rial pathogen–host systems (27,28). To successfully perform
these experiments, several technical aspects were addressed
to account for highly abundant rRNA or tRNA from phylo-
genetically heterogeneous samples, the lack of poly-A tails
in bacteria and scenarios where one of the organisms was
present in very small relative amounts. In contrast, bioin-
formatic analyses of these results are generally straightfor-
ward, since 100–150 nt sequences (the most common read-
length of current Illumina sequencers) can usually be easily
assigned to the correct position, in the correct genome of
origin.

Dealing with smaller RNAs, such as eukaryotic sRNAs
(∼20–30 nt), presents completely different challenges. Re-
moval of full length rRNA and tRNA, or poly-A selec-
tion is not required, since a size-selection step prior to, or
after library generation will enrich for the RNA popula-
tion of interest. On the other hand, bioinformatic analy-
ses can be challenging since very short sequences can map
perfectly to a large genome just by chance. Furthermore,
short sequences can map to multiple locations, leading to
uncertainty that is sometimes solved by discarding these
sequences. Some sequences can also genuinely arise from
different species. Ancient miRNAs, as well as highly con-
served rRNA/tRNA fragments can share up to 100% iden-
tity between phylogenetically diverse organisms like nema-
todes and mammals. On the other hand, new miRNAs are
constantly evolving, and they have been proposed as phylo-

genetic markers (29). Taking advantage of this idea, miR-
Trace was developed to predict the taxonomic diversity in
any sRNA-Seq sample or detect the origin of cross-species
contamination (30). Yet because it relies on a database of
clade-specific miRNAs, it cannot classify sequences that
have not been curated and does not account for the other
categories of sRNAs in samples.

There is increasing interest in studying the sRNAs that
are naturally exchanged between organisms. We initially
reported, using standard library preparation techniques,
that EVs secreted by the parasitic nematode H. bakeri
mostly contain microRNAs (12). Recently we discovered
that 5′ triphosphate small interfering RNAs (siRNAs) de-
rived from repetitive elements are in fact the most domi-
nant cargo (31). This is quite interesting, since the sRNAs
secreted by B. cinerea that impair plant defense responses
derive from transposable elements (11). It is possible that
various pathogens use repetitive elements of their genome
to efficiently explore a wide range of sequences to interfere
with their hosts. There are no available methods to confi-
dently detect and quantify these kinds of sRNAs within the
cells or tissues of another organism. Here we describe the
development of methods to detect, quantify, and character-
ize sRNAs that can move between different species.

We downloaded available data from experiments de-
signed to probe inter-organismal communication mediated
by sRNAs between three eukaryotic parasites and their
hosts. We also included a symbiosis model of nodulating
bacteria. To further increase our dataset diversity, we de-
signed new experiments to discover which of the siRNAs
in H. bakeri EVs actually get into mouse host cells. We de-
tail the difficulties of analysing all of these kinds of experi-
ments, and propose a series of strategies to solve them. One
of the biggest challenges arises from the sRNAs which can
confidently map to the genomes of both interacting species.
We show that this ambiguity, as expected, depends on the
length of the sRNA, the size of the genomes, and their phy-
logenetic relationship. We next demonstrate how sequence
assembly of the raw sRNA-Seq data extends the length of
many sRNAs and reduces the ambiguity problem. Finally,
we show how differential expression analysis, in combina-
tion with sRNA assembly, and proper experimental designs,
can be leveraged to confidently detect and quantify the sR-
NAs that move between even closely related species.

MATERIALS AND METHODS

Selected experiments and reference genomes

The list of host–symbiont species used in this work is shown
in Table 1. Further information of the sRNA-Seq data pro-
cessed from these experiments is included in Supplemen-
tary Table S1. The reference genomes used are described
in Supplementary Table S2. To facilitate finding ambiguous
reads across both genomes, a combined reference was pro-
duced by concatenating the sequences from both genomes
for each experiment. In cases where rRNA was missing,
these were manually added as an extra contig. A two-word
label was added to all fasta headers to differentiate parasite
form host genome sequences. All genome files were indexed
using Bowtie-1.2.2 (32).
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Table 1. Small RNA sequencing datasets of interacting organisms

Host Symbiont Tissue or condition Data availability Reference

Arabidopsis thaliana Botrytis cinerea Rosette leaves: 24, 48 and 72 h
after infection

Sequence Read Archive:
SRP019801. Samples: SRX252403,
SRX252404, SRX252405

(11)

Arabidopsis thaliana Cuscuta campestris Arabidopsis stems 4 cm above
a Cuscuta haustorium

Sequence Read Archive:
SRP118832. Samples: SRX3214812,
SRX3214813

(14)

Meriones unguiculatus Litomosoides
sigmodontis

Serum from infected gerbils GEO: GSE112949. Samples:
GSM3091975, GSM3091976,
GSM3091977, GSM3091978,
GSM3091979

(50)

Mus musculus Heligmosomoides
bakeri

MODE-K cell line: 4 and 24 h
after adding EVs

GEO: GSE124506. Samples:
GSM3535462, GSM3535463,
GSM3535464, GSM3535468,
GSM3535469, GSM3535470

This work

Glycine max Bradyrhizobium
japonicum

10 and 20 days nodule Sequence Read Archive:
SRP164711. Samples: SRR7986783,
SRR7986788

(24)

H. bakeri life cycle and EV isolation

CBA × C57BL/6 F1 (CBF1) mice were infected with 400
L3 infective-stage H. bakeri larvae by gavage and adult ne-
matodes were collected from the small intestine 14 days post
infection. The nematodes were washed and maintained in
serum-free media in vitro as described previously (31). To
collect H. bakeri EVs, culture media from the adult worms
were collected from 24–92 h post-harvest from the mouse
(the first 24 h of culture media was excluded to reduce host
contaminants). Eggs were removed by spinning at 400 g
and the supernatant was then filtered through 0.22 mm sy-
ringe filter (Millipore) followed by ultracentrifugation at
100 000 g for 2 h in polyallomer tubes at 4 ◦C in an SW40
rotor (Beckman Coulter). Pelleted material was washed two
times in filtered PBS at 100 000 g for 2 h and re-suspended in
PBS. The pelleted H. bakeri EVs, were quantified by Qubit
Protein Assay Kit (Thermo Fisher), on a Qubit 3.0.

MODE-K uptake assays

MODE-K cells were kindly provided by Dominique Kaiser-
lian (INSERM) and were maintained as previously de-
scribed (33). Uptake experiments were carried out with
2.5 ug EVs per 50 000 cells for 4 and 24 h time points, in
a 37 ◦C, 5% CO2 incubator. Cells that were not incubated
with H. bakeri EVs were treated as controls for the two-time
points. Cells were washed twice in PBS before RNA extrac-
tion with a miRNeasy mini kit (Qiagen), according to man-
ufacturer’s instructions. The RNA Integrity Number (RIN)
was tested with the Agilent RNA 6000 Pico Kit on an Ag-
ilent 2100 Bioanalyzer. Three biological replicates were in-
cluded for each of the samples.

Small RNA library prep and sequencing

Total RNA was treated with RNA 5′ Polyphosphatase
(Epicenter) following manufacturer’s instructions, before li-
brary preparation. Libraries for sRNA sequencing were
prepared using the CleanTag sRNA library prep kit accord-
ing to manufacturer’s instructions. Although there are other
sRNA library prep methods that can reduce the quantifi-
cation bias due to adapter ligation, e.g. (34), in our hands

and due to the small amount of starting material, CleanTag
kits yield much higher signal:background (fewer adapter–
dimers) for extracellular material. For all samples, 1:2 di-
lutions of both adapters were used with 18 amplification
cycles (TriLink BioTechnologies). Libraries of 140–170 bp
in length were size-selected and sequenced on an Illumina
HiSeq 2500 in high-output mode with v4 chemistry and
50 bp SE reads, by Edinburgh Genomics at the University
of Edinburgh (Edinburgh, UK). This insert size was chosen
to focus on the small interfering guides of exWAGO, the
only Argonaute protein detected within Heligmosomoides
EVs. We know that these siRNAs are mainly 23–24nt and
are one of the main small RNA components of EVs (31).

Processing of small RNA-Seq reads

The quality of all sRNA-Seq reads from each library
was inspected using FastQC (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Raw reads were then
cleaned and trimmed to remove 3′ adapter using reaper
(35) with the following parameters: -geom no-bc, -mr-tabu
14/2/1, -3p-global 12/2/1, -3p-prefix 8/2/1, -3p-head-to-
tail 1, -nnn-check 3/5, -polya 5 -qqq-check 35/10, -tri 35.
Trimmed reads smaller than 18nt were discarded. When
needed, reads were collapsed into individual sequences with
counts, using tally (35). One replicate of the MODE-K con-
trol cells (incubated for 24 h without treatment) was an out-
lier according to PCA analysis, did not have a clear peak of
mouse miRNAs (suggesting degraded RNA), and was ex-
cluded from further analyses.

Calculations of host, symbiont and ambiguous reads

Each library was aligned to the separate host and symbiont
genomes using Bowtie-1.2.2 (32) and requiring perfect end-
to-end hits (-v 0). Each read was classified as: host if it only
hit the host genome, symbiont if it only hit the symbiont
reference and ambiguous if it hit both genomes. The result-
ing length distributions of trimmed reads (classified as host,
symbiont or ambiguous) for all experiments are shown in
Supplementary Figure S1.
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Shared k-mers between genomes

To calculate the fraction of shared k-mers (s) of length 12–
30 in two random genomes of fixed sizes we used the follow-
ing equation:

S = Nab
Na + Nb − Nab

where Na and Nb are the number of k-mers in random
genomes a and b, respectively. Nab corresponds to the num-
ber of shared k-mers in both genomes. The values of Na,
Nb and Nab were calculated using the theoretical approach
given by (36).

The fractions of k-mers between sizes 12–30 that are
shared between each pair of real genomes were calculated
using Jellyfish 2.2.10 (37).

Genome-guided sRNA assembly

To perform genome-guided sRNA assembly, ShortStack
3.8.2 (38) was used with parameters favoring smaller clus-
ters: a minimum coverage of one read, requiring 0 mis-
matches, using unique-mapping reads as guide to assign
multi-mapping reads (mmap: u), a padding value of 1, re-
porting all bowtie alignments (bowtie m: ‘all’), and a ran-
max value of 5000 to avoid losing reads mapping to multi-
ple sites. The default bowtie cores and sorting memory val-
ues were also increased to improve processing time. Reads
were aligned to the concatenated host and symbiont refer-
ence genomes described above.

De novo assembly of sRNA-Seq

To evaluate de novo assembly of sRNA reads, six pop-
ular RNA-Seq de novo assemblers were selected: Oases
(39), rnaSpades (40), SOAPdeNovo (41), Tadpole (https://
jgi.doe.gov/data-and-tools/bbtools/), TransAbyss (42) and
Trinity (43). These assemblers were also evaluated using
only their first ‘k-mer extension’ step: (a) rnaSpades ‘–
only-assembler’, Trans-AbySS ‘–stage contigs’ and Trinity
‘–no run chrysalis’; (b) the equivalent for Oases was to use
contigs generated by velvetg, while for SOAPdenovo-Trans
the .contig output file was used; (c) Tadpole is a simple
assembler that only performs k-mer extension. Additional
parameters for each configuration are available in Supple-
mentary Table S3. All the generated contigs were post-
processed as follows: (i) all reads used to generate the as-
sembly were aligned back to the contigs using Bowtie-1.2.2
(-v 0) and (ii) using the BAM files from these alignments,
contig edges that did not have any reads mapping to them
were trimmed back. All contigs were then mapped to the
reference genomes to decide if they were host or symbiont.

Disambiguation of host–symbiont mixed samples

To try to disambiguate reads that mapped equally well to
both genomes, we used the assembled de novo contigs or
genome-guided clusters. Clusters are assembled directly on
a specific genome, so by definition they are not ambiguous.
Contigs are assembled in the absence of a genome, but since
they are longer than reads, they will be less ambiguous (e.g.

see Figure 1). So we mapped the contigs to the genomes, first
with Bowtie-1.2.2 (32) to find perfect hits, and the remain-
der with a more relaxed setting using Bowtie2–2.3.3 (44)
(allowing indels and mismatches). For contigs that mapped
imperfectly to both genomes, the alignment with fewer mis-
matches was selected (XM:i<N> SAM optional field). We
then mapped all reads to contigs or clusters. For simplicity
the following will refer to contigs only.

We classified the mapped reads into three groups: those
that mapped to multiple contigs (multi-mapping reads),
reads that mapped uniquely to one contig (uniquely-
mapping reads) and reads that did not align to any contig.
This is now a problem similar to assigning multi-mapping
reads to transcript isoforms. Tools such as ERANGE (45),
a method developed for CAGE (46), RSEM (47) and Short-
Stack (48) use the information in uniquely mapping reads to
‘rescue’ reads that map to multiple transcripts. The core idea
is that the proportion of uniquely-mapping reads is a good
estimate for the proportion of multi-mapping reads pro-
duced from each transcript. In our implementation we first
summed the counts of all the uniquely-mapping reads for
each contig across all libraries, producing global uniquely-
mapping counts. In order to only use the most informa-
tive contigs with high global uniquely-mapping counts, we
selected the top 0.2% (we evaluated different cutoffs, and
∼90% of the multi-mapping reads can be assigned with
this cutoff). We then distributed the counts of the multi-
mapping reads that mapped to these contigs, proportional
to the global uniquely-mapping counts. Reads that mapped
to other contigs, as well as those that mapped to ambigu-
ous contigs or did not map, remained ambiguous. The
R code with our implementation of these steps is avail-
able in the repository: https://github.com/ObedRamirez/
Disentangling-sRNA-Seq.

Differential expression analysis

To perform differential expression analysis, a matrix was
first built for individual sequences using all distinct reads in
the libraries to be compared. In this matrix, rows represent
individual sequences and columns represent libraries. Each
cell represents the times a sequence was found in a given li-
brary. A similar procedure was done to obtain matrices for
contigs and clusters, except that their counts were obtained
by mapping each library to FASTA files of the contigs or
clusters, and multi-mapping reads were disambiguated as
described in the previous section.

Differential expression analyses were performed using
the edgeR package (49). The sRNA elements (individual
sequences, de novo assembled contigs or genome-guided
clusters) with low expression were filtered out: only those
with more than one count per million in at least two li-
braries were kept. The MODE-K vesicle-treated libraries
were compared to the control untreated MODE-K libraries,
regardless of the incubation time (4 and 24 h). To determine
differential expression, a generalized linear model (GLM)
likelihood ratio test was used, always fixing a common
dispersion value of 1.626, which was estimated using the
unassembled reads. False discovery rates (FDR) were cal-
culated, and sequences that mapped to the symbiont and
had an FDR < 0.1 and a positive log fold-change were
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considered symbiont sequences according to differential ex-
pression. The R scripts we used to perform these analy-
ses are also available in the repository: https://github.com/
ObedRamirez/Disentangling-sRNA-Seq.

Defining sRNA classes by length and first nucleotide

For the H. bakeri experiments, the first nucleotide and
length of each sequence mapping to the de novo assembled
contigs and genome-guided clusters was calculated using
custom R scripts and the Rsamtools package. Reads begin-
ning with a Guanine and between 21–24 nucleotides were
classified as ‘22G’. Reads beginning with a Thymine and
between 21–24 nucleotides were classified as ‘22U’. These
criteria were defined by observing the properties of the pure
EV and MODE-K libraries (Supplementary Figure S2).

Expression comparison with H. bakeri EV libraries

To compare the expression of the nematode sequences de-
tected in MODE-K libraries with pure EV nematode li-
braries, we mapped EV reads to Up-regulated (Up) sym-
biont unassembled reads, or to all reads assigned to our Up
contigs or clusters using Bowtie-1.2.2. This approach was
chosen to achieve a fairer comparison between assembled
and unassembled reads.

RESULTS AND DISCUSSION

A diverse selection of species that exchange small RNAs

To build a foundation for bioinformatically probing cross-
species RNA communication, we selected five phylogenet-
ically diverse pairs of interacting organisms from publi-
cations with available sRNA-Seq data, and where small
RNAs were proposed as mediators of cross-species commu-
nication (Table 1). These were the model plant Arabidop-
sis thaliana infected by a fungus (Botrytis cinerea) (11) or
a parasitic plant (Cuscuta campestris) (14), and the mon-
golian gerbil (Meriones unguiculatus) infected by a filarial
parasite (Litomosoides sigmodontis) (50). Given our inter-
est in parasitic nematodes and their secreted extracellular
vesicles (EVs) (12,31), we designed new experiments to ex-
plore the sRNA guides of exWAGO present in EVs from
Heligmosomoides bakeri that get internalized by host cells,
using sRNA-Seq of a mouse intestinal epithelial cell line.
Finally, we also included soybean (Glycine max) nodules,
containing the bacterium (Bradyrhizobium japonicum) that
helps its host by fixing nitrogen (24). The full list of sRNA-
Seq samples available from these experiments are described
in Supplementary Table S1.

Since the field of cross-species communication by RNA
is still young, these represent some of the only real-world
scenarios of symbiotic or parasitic models that have been
examined with sRNA-Seq. The biological material sampled
in each case is diverse: infected stems or leaves in the case
of Arabidopsis, serum from infected gerbils, a cell culture
for our nematode-mouse model, and nodules from soybean.
The amount of RNA present from the two organisms within
the samples can also be quite different. Botrytis spores are

used to infect Arabidopsis leaves, from which RNA is ex-
tracted after the necrotrophic fungus has grown and in-
vaded the tissue of its host. At the time of sampling the par-
asite had overgrown a small portion of the leaf. The Cus-
cuta experiment includes different types of samples (Sup-
plementary Table S1), and for our main analysis we se-
lected those from Arabidopsis stems ∼4 cm above the par-
asite haustorium. The rodent pathogens release extracel-
lular RNA to the host environment and the parasites are
not themselves present in the collected material. The soy-
bean samples are from nodule tissue at two time points, so
they include the bacterial cells growing within. We expected
the rodent samples in particular to be akin to a ‘needle in
a haystack’ problem, with very small amounts of parasite
sRNA amongst a very large amount of host RNA. In con-
trast, the plant samples are expected to contain a mixed
population of sRNAs from both species at more com-
parable levels. The Botrytis and soybean samples include
cells from both organisms, instead of extracellular mate-
rial. Nevertheless, the Botrytis experiment represents one of
the first and most cited publications regarding RNA com-
munication between species, and the soybean-bacteria ex-
periment provides an interesting contrast to the eukaryotic
parasites.

Determining the amount of host, symbiont and ambiguous
reads in sRNA datasets

As a first step to identify the genome of origin of sRNAs in-
volved in cross-species communication, we prepared a com-
bined reference genome for each pair of interacting species
(see Methods, and Supplementary Table S2). We then fo-
cused on sRNA reads of at least 18 nucleotides that map
with 100% identity to the corresponding combined refer-
ence. These mapped reads are then divided into three cat-
egories: (i) host (if they only map to the host portion of
the reference), (ii) symbiont (if they only map to the sym-
biont) and (iii) ambiguous (if they map at least once to the
host and at least once to the symbiont). With this partition-
ing, different experiments yield varying proportions of host,
symbiont and ambiguous reads (Supplementary Figures S1
and S3). Although in principle sRNAs of any size could be
exchanged and be functionally important, the experiments
we analyzed included a size-fractionation step to enrich se-
quences between 20nt and 30nt. Nevertheless, a range of se-
quences of up to 50nt (the maximum read length) remain in
most experiments, as can be appreciated in Supplementary
Figure S1.

The Arabidopsis + Botrytis libraries show between ∼4–
7% of symbiont reads, with ambiguous reads accounting
for ∼1–7%. The Arabidopsis + Cuscuta libraries show ∼4%
of symbiont and up to ∼55% of ambiguous reads. The in-
fected gerbil serum had between ∼1–3% of symbiont reads
but only ∼0.5% of ambiguous reads. The MODE-K cells
treated with extracellular vesicles from H. bakeri yielded the
lowest amount of symbiont reads: 0.4–0.9%. In this case, the
symbiont reads are clearly outnumbered by the ambiguous
ones, with ∼4–6% being assigned to this category. Finally,
the soybean libraries contain ∼9–19% bacterial reads and
only ∼0.1–0.2% ambiguous reads. These results highlight
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Figure 1. Factors that influence the number of ambiguous k-mers between pairs of genomes. X-axes represent the k-mer size and Y-axes the fraction of
shared or ambiguous k-mers. (A) Random genomes of sizes equivalent to those of A. thaliana and B. cinerea. (B) Fixed A. thaliana genome, compared to
full B. cinerea genome or a sample corresponding to 50% or 10% of the complete genome. (C) All genomes were subsampled to the size of the smallest, that
of B. japonicum. (D) Real fractions of ambiguous k-mers in each pair of complete genomes. Insets correspond to a zoomed in area of k-mer sizes 18–23.

the difficulty in correctly identifying the origin of all the sR-
NAs. Whilst one approach would be to discard the ambigu-
ous reads we could be throwing away an important amount
of sequencing information that may include bonafide RNA
molecules involved in cross-species communication.

Ambiguity in host–symbiont sRNA-Seq reads is influenced by
read length, genome size and phylogenetic distance

We next wanted to explore the factors that lead to ambigu-
ous reads in our host–symbiont models. Similar problems
have been approached before, showing that read length,

genome size and phylogenetic relationships are important
(36). We describe these factors for our models, using ‘k-
mers’ (nucleotide words of length k) as a proxy for reads
(Figure 1).

Read length

Intuitively, it is more likely that a small k-mer will be present
in two genomes compared to a longer k-mer. To illustrate
this, we define two random genomes of the same size as
A. thaliana and B. cinerea, and calculated the fraction of
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shared k-mers of different sizes (36). The shared k-mers be-
tween these two random genomes decrease rapidly as k in-
creases. For instance, almost 80% of k-mers of length 12 are
shared, but when considering k-mers of length 18, <0.3%
are shared (Figure 1A).

Genome size

The size of each genome determines the maximum num-
ber of distinct k-mers that it contains (Supplementary Fig-
ure S4). A smaller genome will have fewer distinct k-mers,
and so the number of shared k-mers it can have with an-
other genome is also expected to be smaller. To highlight
this property, we took the real A. thaliana genome, but sam-
pled decreasing fractions of the B. cinerea genome (100%,
50% and 10%) to visualize how the number of shared k-
mers changes. As expected, smaller Botrytis genomes share
a smaller percent of k-mers of any length (Figure 1B).

Phylogenetic distance

Real genomes are not random concatenations of nu-
cleotides, but are related through shared ancestry. Thus, the
phylogenetic distance between two genomes should also in-
fluence the number of shared k-mers and therefore our abil-
ity to distinguish sRNAs that might map to both. If we
imagine two genomes that have just begun to diverge, al-
most all k-mers will be shared. To quantify the effect of
phylogenetic separation, but ignoring the effect of genome
size which we described above, we fixed the smallest of the
genomes under consideration (B. japonicum) and randomly
down-sampled each of the other eight genomes to this size.

The effect of phylogenetic distance is small but noticeable
(Figure 1C). In particular A. thaliana shares more k-mers
with another plant (C. campestris) than with a fungus (B.
cinerea), and the smallest number of shared k-mers are be-
tween a plant (G. max) and a bacteria (B. japonicum). While
both pairs of animal genomes are expected to be similarly
related (rodents and nematodes), H. bakeri shares fewer k-
mers with mouse than L. sigmodontis with the gerbil. This
can be explained since H. bakeri has a particularly large
genome (∼700 Mb, compared to ∼65 Mb for L. sigmod-
ontis), that is full of repetitive elements many of which are
unique to this species (31). A random sample of the H. bak-
eri genome will thus include more k-mers from these repet-
itive elements. This helps explain the smaller fraction of
shared k-mers than expected due to phylogeny, and high-
lights an extra contributing factor: genome composition
and complexity, which we will not explore further in this
work.

It is thus not possible to predict the exact number of
ambiguous k-mers between two species just based on their
genome size and phylogenetic distance, but if the genomes
are available it can be efficiently calculated using tools like
Jellyfish (37). By doing so, we can see that H. bakeri and
M. musculus show the highest level of ambiguous k-mers,
while G. max and B. japonicum show the lowest (Figure 1D).
These are the biggest and smallest pairs of genomes, respec-
tively, indicating that genome size is a major factor driv-
ing these differences. But at longer k-mers the two plant
genomes are the pair with the highest ambiguity. This is

due to their close phylogeny (both species are eudicotyle-
dons, a clade of flowering plants). In all the eukaryotic pairs,
the ambiguous k-mers between real genomes, at larger k-
mer sizes, become much higher than expected exclusively by
genome size, reflecting the contribution of shared ancestry
(Supplementary Figure S5).

From these results, there are two important things to note
for our purposes: (i) even for k-mers the size of biologically
important molecules like microRNAs (∼21 nucleotides),
there is always a fraction that will be shared identically be-
tween two genomes and (ii) if we could increase the length
of any sequence, even by one or two nucleotides, the prob-
ability that it will be shared between genomes substantially
decreases.

High levels of ambiguity in host–symbiont sRNA-Seq reads
is caused by conserved sequences like ribosomal, transfer and
microRNAs

The levels of ambiguity in our real sRNA-Seq data are much
higher than predicted by the fractions of k-mers shared be-
tween pairs of genomes. For instance, 52–55% of all 18–
50nt reads from the A. thaliana and C. campestris interac-
tion are ambiguous (Supplementary Figure S3), while only
1.8% of k-mers of size 18 are shared between the genomes
(Figure 1D). This is a consequence of sRNA-Seq reads not
being produced randomly across the genome, and indicates
that many come from regions with a higher-than-average
level of conservation. This is not surprising since conserved
classes of RNA, like ribosomal RNA, are always sequenced
to some extent. So, from what regions are our sRNA-Seq
reads being produced, particularly the ambiguous ones?
We sought to answer this, focusing on the A. thaliana and
C. campestris interaction where the problem of ambiguous
reads is most apparent (Supplementary Figure S3).

We extracted all the ambiguous reads from libraries of A.
thaliana stems 4 cm above the C. campestris primary haus-
torium (average of 1 260 368 from the two replicates) and
tabulated them by length (Figure 2). The length distribution
suggests slightly degraded RNA, with a tendency towards
reads of shorter lengths (Figure 2A). Plants usually show a
peak of 21nt enriched with miRNAs, and a peak of 24nt
enriched with siRNAs that target transposable elements,
and these are not as clearly defined here as in some of the
other samples from the same experiment (Supplementary
Figure S6). We then traced where all the ambiguous reads
mapped in A. thaliana, which is better annotated, and clas-
sified them according to the annotation of this genome (Fig-
ure 2B). Most ambiguous reads map to rRNA (91.6%), fol-
lowed by those that map to miRNA at the expected ∼21nt
(3.2%), and tRNA (2.6%). This represents a clear enrich-
ment for rRNA, miRNA and tRNA, since together they
occupy ∼0.05% of the Arabidopsis genome, while compris-
ing 97.5% of the ambiguous reads. Only 0.47% of the am-
biguous reads map to other annotations, including exons,
introns, transposable elements, pseudogenes and other non-
coding RNA (in total occupying 75.3% of the genome),
while the remaining 2% map to unannotated intergenic re-
gions, which in total occupy 24.5% of the genome. Many
plant miRNAs are highly conserved (51), so it is not sur-
prising that a large fraction of the 21nt ambiguous reads
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Figure 2. Genomic origin of ambiguous reads from libraries of A. thaliana stems 4cm above a C. campestris haustorium. Each bar represents the sequenced
reads of one size between 18 and 50 nucleotides. Bar height represents the actual number of reads (top) or the fraction of reads (bottom). (A) Mapping
categories are: host (green), symbiont (blue) or ambiguous (purple). (B) Genomic annotation of ambiguous reads only: intergenic (light green), miRNA
(yellow), rRNA (light purple), tRNA (red) or other annotation (orange).

coincide with conserved and highly-expressed miRNAs like
MIR159, MIR319a and MIR396a. Ribosomal reads are
more evenly distributed across all read lengths, suggesting
that their presence is caused by low levels of fragmenta-
tion of highly abundant RNA molecules. Ribosomal, trans-
fer RNA and miRNA contribution is also the main expla-
nation for the ambiguous reads in libraries collected from
the Cuscuta stem above the primary haustorium, and from
Arabidopsis stems with a C. campestris haustorium attached
(Supplementary Figure S6).

With these results we can see that discarding sRNA-Seq
reads that map to rRNA and tRNA annotations, which is
a common practice, can lead to a substantial reduction of
ambiguity. Yet, the ultimate goal of this work is to be able
to detect RNA transfer between species and emerging liter-
ature suggests tRNA and rRNA fragments could be extra-
cellular signaling molecules. For instance, tRNA fragments
can be selectively packaged into extracellular vesicles and
move between cells (52), while tRNA fragments in sperm
can contribute to intergenerational inheritance (53). Fur-
thermore, bacterial tRNA-derived sRNAs have been impli-
cated in plant root nodulation (24).

Discarding conserved miRNA sequences would be even
more problematic, since foreign miRNAs are known to ben-
efit from hijacking existing regulatory networks. A Kaposi’s
sarcoma herpesvirus miRNA uses the same target site as
the cellular miR-155 (54), while we have shown that nema-
tode miR-100 and let-7, which are identical to their mouse
counterparts, are present in secreted material during infec-
tion (12). During parasitism, novel miRNAs from Cuscuta
were shown to enter and target host mRNAs (14), so con-
served miRNAs could also be exchanged and functional.
Therefore, there is a need to be able to track the origin of
ambiguous sequences.

Even highly conserved miRNAs, tRNAs and rRNAs
have point differences in some part of their sequence. For
example, rRNAs contain variable regions that are leveraged
during phylogenetic analyses, and the loops of miRNA hair-

pins tend to be poorly conserved. Due to the high depth
of current sequencing technology, there will be overlapping
reads with slightly different 5′ and 3′ ends, due to imper-
fect enzymatic processing or degradation. Depending on
the length range being sequenced, reads from precursors be-
fore processing/degradation can also be present. In fact, the
existence of reads from different parts of miRNA hairpin
precursors, including both arms and the loop region, is the
basis of popular prediction tools like miRDeep2 (55). Thus,
as long as we are able to extend the conserved sequences
into a less conserved portion, we should be able to disam-
biguate them. We therefore explore the possibility of using
sRNA-Seq assembly to reduce ambiguity through extension
of reads.

Assembly of sRNA-Seq reads

Most work on RNA sequence assembly has focused on pro-
ducing full-length transcripts from mRNA-Seq data. There
are many methods that work in a genome-guided fashion:
first mapping reads to the genome, then assembling clus-
ters (exons) and connecting them with rules based on splic-
ing properties and sequencing depth, e.g. Cufflinks (56) and
Stringtie (57). Analogous to these, there are some tools that
cluster sRNA-Seq reads where they map to the genome,
in order to predict sRNA-producing loci: segmentSeq (58),
CoLIde (59), and ShortStack (38). ShortStack fits our needs
quite well, since it analyses reference-aligned sRNA-Seq
reads to cluster them in order to predict sRNA genes, which
we shall refer to as genome-guided clusters from here on. So,
we used ShortStack to perform a genome-guided sRNA as-
sembly and quantification.

We were also particularly interested in finding out if we
could deal with situations in which the genomes for the
interacting organisms were not available, or were not of
sufficient quality. In these cases, a de novo assembly ap-
proach is the only option. There has been a lot of develop-
ment regarding de novo RNA-Seq assemblers. These tools
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do not require genome sequences, but rely instead on break-
ing down reads into k-mers, building a graph, and finding
paths through the graph to build longer sequences. These
RNA-Seq de novo assemblers are not designed for using
on sRNA-Seq data. For example, k-mers of at least 25 nu-
cleotides are usually used to improve the assembly quality,
while some functional molecules in sRNA-Seq (e.g. miR-
NAs) are smaller than this size. In our case, though, we want
to extend all sRNA sequences in order to capture sequence
variation that can help us infer the correct genome of origin.

We tested six popular de novo transcriptome assemblers:
Oases (39), rnaSPAdes (40), SOAPdenovo (41), Tadpole
(https://jgi.doe.gov/data-and-tools/bbtools/), TransABySS
(42) and Trinity (43). These programs first generate contigs
by extending k-mers in a graph. This step produces short
contigs that are later connected into full-length transcripts,
but for our purpose of slightly extending sRNAs it could be
sufficient, so we included the output of this ‘k-mer exten-
sion’ step as a standalone method when possible (see Mate-
rials and Methods). One of the most important parameters
for all the assemblers is the k-mer size, which affected the
number of reads that we could remap to the assembly (Sup-
plementary Figure S7). The optimal k-mer was 19 for our
sRNA-Seq datasets, except for the A. thaliana + B. cinerea
data where 23 was slightly better.

The four assemblies generated with only the first ‘k-
mer extension’ step (rnaSPAdes-only-assembler, Tadpole,
Trans-ABySS-stage-contigs and Trinity-inchworm) per-
formed quite differently than the full pipelines (Supplemen-
tary Figure S8). They generated a larger number of con-
tigs (Supplementary Figure S8A), that were shorter (Sup-
plementary Figure S8B), and mapped more often to the ref-
erence genomes (Supplementary Figure S8C) than the full
transcriptome assemblers. Additionally, library re-mapping
was higher than with the other evaluated assemblies (Sup-
plementary Figure S8D). From these, Trinity-inchworm
showed the highest library re-mapping in the majority of the
evaluated datasets and is therefore used in our subsequent
analyses.

Assembly reduces ambiguity of host–symbiont sRNA-Seq
reads

To compare the amount of ambiguity between the orig-
inal reads (unassembled), de novo contigs and genome-
guided clusters, we first assigned contigs and clusters to
their genome of origin (see Materials and Methods). We
then mapped reads directly to the sequences of the con-
tigs or clusters. The reads that mapped to more than one
of these are ambiguous, but this problem is analogous to
when reads map to different transcript isoforms or par-
alogous genes. Several tools, including ERANGE (45), a
method developed for CAGE (46), RSEM (47) and Short-
Stack (48) assume that the proportion of reads that uniquely
map to each isoform is a good proxy for the fraction of am-
biguous reads that are produced from those isoforms. This
logic is supported by independent simulations (47,48,60) as
well as correlations with microarray and qPCR experiments
(45,46,48). We reimplemented these ideas to use the number
of uniquely-mapping reads to help distribute the reads that

mapped equally well to more than one contig or cluster (see
Materials and Methods).

With either type of assembly, many previously ambigu-
ous reads can now be assigned to one of the two interacting
genomes (Figure 3). The results vary by dataset, with the
de novo contigs reducing more ambiguity than the genome-
guided clusters in three out of five cases. It seems that
de novo assembly benefits more from using longer sRNA
reads (31–50nt) since during an initial assembly where these
reads were excluded, genome-guided clusters outperformed
de novo assembly (not shown). Nevertheless, both strategies
outperform the baseline use of unassembled reads.

These results show how the assembled versions of the
sRNA-Seq data contain more reads that can be assigned to
the interacting organisms, and less ambiguity, allowing re-
searchers to use more information from their experiments.
However, the assembled sequences could include reads from
the wrong genome, due to errors during assembly. So, we
ideally want an independent test for validating the origin of
the assembled sequences mapped to the symbiont genome.

Differential expression analysis improves detection of para-
site sRNAs

Ideally, parasite sRNAs should be present in those sam-
ples that were infected with the parasite, and be absent (no
reads) in uninfected samples. Unfortunately, this does not
perfectly hold due to problems like index-swapping during
library preparation (61). Especially for situations when the
parasite sRNAs can be present in very low numbers, a sta-
tistical framework is needed to determine which sRNAs are
reliably present in the infected compared to uninfected sam-
ples. For this, we can use differential expression analysis,
which also helps to confirm if our assembled sequences be-
have like parasite or host sequences.

We designed our new H. bakeri extracellular-vesicle (EV)
experiment to be amenable to differential expression anal-
ysis. We collected RNA from six biological replicates of
MODE-K intestinal epithelial cell cultures treated with H.
bakeri EVs, and the corresponding untreated controls. Since
we do not know the dynamics of import, or the stability
of foreign sRNA once inside the cells, we performed RNA
extraction for half our replicates at 4 h, and the other half
at 24 h after treatment and following extensive washing of
cells. We then mapped all the sRNA-Seq reads to our assem-
bled contigs and clusters, and quantified their expression as
above (see Methods). We also obtained the simple counts of
each unique unassembled read for the baseline analysis. For
these three types of count matrices, we performed the exact
same steps of a differential expression analysis (see Materi-
als and Methods). We also kept track of H. bakeri, M. mus-
culus or ambiguous mapping status for reads, contigs and
clusters and used this information when visualizing our re-
sults. This helps us determine which reads/contigs/clusters
may actually come from the host genome, despite mapping
perfectly and preferentially to the parasite genome.

The process of sequence assembly reduces ambiguity, but
another advantage is that it reduces the number of statis-
tical tests performed during differential expression analysis
(there are fewer distinct contigs/clusters than unassembled
reads), reducing a problem known in statistics as multiple-
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Figure 3. Percent of ambiguous and symbiont reads before and after assembly. The name of the two interacting species is shown for each experiment above
three bars. All 18–50nt reads were classified and the percent of each category were averaged across each experiment’s samples. The first bar of each group
represents unassembled reads, the second de novo contigs, the third genome-guided clusters. The Y-axes are independently zoomed and cut to highlight the
percent of symbiont (blue) and ambiguous (purple) reads. Host reads (green) always represent the remainder of 100%.

testing. In addition, if the reads are grouped correctly into
real biological entities with a consistent expression pattern,
we should get higher counts and increased statistical power.

Although we conservatively performed the differential
expression analysis starting with all unassembled reads,
contigs or clusters, we focused only on the subset that
should contain the real parasite sequences: those that were
assigned to the H. bakeri genome (parasite), and that were
up-regulated in the EV-treated samples (Up). With these cri-
teria, the parasite sequences we detected with each strategy
included an average of 17 506 counts for the Up unassem-
bled reads, 40 334 counts for the Up de novo contigs, and
42 092 counts for the Up genome-guided clusters (Supple-
mentary Table S4 and Figure S9). These results show how
the assemblies have increased the number of confidently de-
tected parasitic sequences: the de novo contigs contain 2.3
times more counts, and the genome-guided clusters about
2.4 times more counts, compared to the unassembled reads.

Our mapping results (Figure 3) indicated that all se-
quences that map perfectly to the parasite genome repre-
sent genuine parasite sRNAs. Our differential expression
results suggest that even sRNAs that appear to be correctly
mapped can still be divided into those that are genuine par-
asite sRNAs (up-regulated in samples treated with para-
site EVs), and those that more likely represent host sRNAs
(similar expression levels in treated and control samples).
Nevertheless, our differential expression analysis could be
underpowered (due to a relatively small number of repli-
cates and high biological variability) leading to false nega-
tive predictions. So, we next wanted to further validate these
results.

Validation of differentially expressed parasitic sRNAs

A distinctive property of H. bakeri EV sRNAs is that the
majority are 22–23 nucleotides in length and begin with
a Guanine (31). This is in stark contrast to endogenous
MODE-K sRNAs that are dominated by miRNAs of 22
nucleotides that begin with a Uracil (Supplementary Figure
S1). We thus have a simple method to determine whether
there is a signature in the reads associated with true par-
asite sRNAs: compare the first-nucleotide preference of
our predictions. We first classified all sRNA reads accord-
ing to starting nucleotide and length, defining three cate-
gories: 22G (enriched in parasite EVs), 22U (enriched in
MODE-K) or other (see Methods). As a reference, libraries
prepared from pure H. bakeri EVs contain 75% 22G and
1.4% 22U reads, while untreated MODE-K libraries con-
tain 2.5% 22G and 43.8% 22U (Figure 4A). The assem-
bled contigs and clusters that do not show evidence of dif-
ferential expression (non-Up) have high fractions of 22U
reads, similar to mouse MODE-K libraries (Figure 4B).
This would suggest that some of the assembled sequences
are actually chimeras, i.e. they have incorporated a large
number of sequences that are really from the host. Unfor-
tunately, we cannot rule out that some of these contain true
parasite miRNA sequences that are diluted by the host con-
tent and remain as false negatives of our differential expres-
sion analysis. Nevertheless, the sRNAs that are significantly
upregulated (Up) after treatment with parasite EVs are en-
riched with 22Gs, consistent with them being true para-
sitic sRNAs (Figure 4B). Our proposed strategies show that
the assembled contigs and clusters allowed us to discover
a larger number of true parasitic sequences (more upregu-
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Figure 4. Evaluation of differential expression results. Reads were categorized as 22G (yellow), 22U (red), or other (grey) based on length and first-
nucleotide. (A) sRNA profiles of control samples: purified H. bakeri Extracellular Vesicles (EVs) and untreated MODE-K cells. Bar height represents the
fraction of all reads. (B) sRNA profiles of unassembled reads, de novo contigs and genome-guided clusters. For each of these sets, there are two bars, the first
one represents differentially expressed up-regulated elements (Up) and the second, elements that lack evidence for differential expression in this direction
(non-Up). Bar height represents the number of reads (top) or the fraction of reads (bottom) belonging to these categories. (C) Percent of reads from pure
H. bakeri EV libraries, recovered during differential expression analysis of MODE-K cells treated with EVs. Each circle represents the total reads from EV
libraries. The recovered fractions are indicated in blue. The numbers of H. bakeri differentially expressed elements are shown to the right, as well as total
read counts (from B).

lated counts and similar 22G enrichment), compared to the
baseline analysis with unassembled reads. In general, our re-
sults show that considering mapping information alone can
be misleading, and that a differential expression approach
is always useful to separate parasite from host sequences.

As a final validation of the parasite Up sequences that
we detect inside host cells, we checked if they are also found
in pure H. bakeri EV libraries. To do so, we first mapped
all our pure H. bakeri EV reads to Up unassembled reads,
or to all reads assigned to our Up contigs or clusters (see
Materials and Methods). We do not expect to recover ev-
ery sRNA read observed in EV libraries, since some EV
sRNAs might not get into MODE-K cells, others might be
turned over quickly or degraded, and others might not be
detected due to insufficient sequencing depth. We reasoned,
though, that the percent of recovered EV reads is an indi-
cation of how good the method is at recovering true para-
site sRNAs within host cells. This analysis showed us that
561 Up unassembled reads correspond to 16.92% of the to-
tal reads in EV libraries, while 1118 Up contigs and 1186
Up clusters receive 27.81% and 29.74% of all EV reads, re-
spectively (Figure 4C). These results again highlight the im-
provement achieved by both assembly strategies.

CONCLUSIONS

We are now realizing that the phenomenon of organisms
exchanging RNA during their interactions is surprisingly
widespread. These sRNAs can be produced and secreted by
the cells of one organism, travel within extracellular vesicles,
and perform regulatory functions when entering cells of a
different species. We know very little about which kinds of

RNAs can be secreted, which ones make it inside the cells of
the receiving organism, and which have a functional role for
the interacting organisms. We are just beginning to under-
stand the potential functions and applications of this kind
of RNA-based communication. Although the sequencing
technology is at a state where we can begin to interrogate
any pair of interacting species at unprecedented detail, there
are no bioinformatic tools to correctly interpret the results.
Before we can properly study the mechanisms and functions
of RNA communication, we need to be able to correctly dis-
entangle the sRNA-Seq data that is being acquired. We have
shown here that the small size of sRNA-Seq sequences, and
the large size of genomes, leads to many sequences mapping
incorrectly or ambiguously to both interacting genomes
(Figure 1). Even worse, many of the produced sRNAs that
can be exchanged include sequences from highly conserved
miRNAs, rRNA or tRNAs that are even more likely to map
well to both genomes (Figure 2). We first showed that by
performing sequence assembly of the sRNA-Seq data, we
can reduce the problem of ambiguity, and assign more se-
quences to their correct genome of origin (Figure 3). Im-
portantly, we revealed that mapping information can still
be misleading, and we showed that differential expression
analysis can be used to confidently detect parasitic sRNAs
that have been internalized by host cells (Figure 4). The con-
clusion that mapping can be misleading can have profound
implications for many projects, for example those that rely
mainly on sRNA mapping to a foreign genome to infer
the transfer of dietary miRNAs to the mammalian blood
stream (6,62,63).

We designed new experiments to detect the parasitic EV
sRNAs from H. bakeri that successfully enter a mouse ep-
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ithelial cell line. With our assembly methods, we showed
that up to 2% of the sRNA-Seq reads within treated
MODE-K cells might come from the parasite. This is a
substantial increase over the simple approach of mapping
to the genomes and dividing perfect hits between parasite
and host, which suggested that only 0.6% of the sRNA-Seq
reads were parasitic (Figure 3). Nevertheless, we showed
with differential expression that these numbers are prob-
ably inflated with sequences that are really from the host.
The sRNAs that pass our differential expression filter have
all the characteristics of true H. bakeri EV sequences: they
show the expected length and first-nucleotide 22G prefer-
ence (Figure 4A and B) and include almost twice the num-
ber of reads sequenced from independently purified EVs,
compared to the approach using unassembled reads (Fig-
ure 4C).

There are still some caveats to the methods we propose.
Highly conserved sequences from the host, like miRNAs,
can be misincorporated into parasitic sequence assemblies.
The magnitude of this problem will depend on the relative
level of expression of the conserved sRNA from both or-
ganisms in the sequenced sample. In our nematode-mouse
experiment, a few miRNAs that we know are present in pu-
rified EVs (e.g. let-7, miR-100) are naturally expressed in
MODE-K cells. Assuming a ratio of 98% host sRNA to 2%
parasite sRNA (Figure 3), even for equally expressed sR-
NAs the mouse copy should be almost 50 times more abun-
dant than the nematode one. It is thus not surprising that
some mouse sequences erroneously contribute to the nema-
tode assemblies. In any case, we believe that there is still
room for improving sRNA-Seq assembly strategies. Promis-
ingly, programs for de novo RNA-Seq assembly can be used,
with appropriate parameters, and yield results that are com-
parable with genome-guided sRNA-Seq cluster assembly.

We have come to appreciate the great advantage of de-
signing experiments to study RNA communication with dif-
ferential expression in mind. Ideally this implies sampling
from the separate organisms, and from the interacting ma-
terial, all with several biological replicates. We realise that
this might be a limitation in some cases, due to cost, the
availability of sufficient quantity of biological material (e.g.
purified EVs) or even the possibility of obtaining certain
samples (e.g. from an obligate intracellular parasite). Nev-
ertheless, we would like to stress the importance of having
biological replicates and controls of at least one of the inter-
acting organisms, particularly for confidently detecting low-
abundance sRNAs. Other steps can also improve the ability
to experimentally detect these sRNAs, such as separately
processing control and infected samples to reduce index-
swapping and contamination between samples (61). Finally,
there have been many advances in library prep methods that
can reduce adapter ligation biases and improve identifica-
tion and quantification of individual sequences (34,64,65).

Regardless of the experimental and bioinformatic ap-
proaches, there may always be sequences that are 100%
identical between the interacting organisms. In organisms
that can be grown separately and then allowed to inter-
act, chemically modifying the nucleotides of one organism
would allow one to experimentally confirm the origin of
some of these sequences. The most interesting next steps,
though, will be to focus on understanding the function of

the exchanged RNAs. A lot of work has focused on small
extracellular RNAs that are of miRNA-like length (∼20–
24nt), with the assumption that they will behave as miR-
NAs when inside a different organism. Nevertheless, this is
not the only mechanism by which foreign sRNAs can act,
and the presence of longer sRNAs (e.g. yRNAs) and a va-
riety of RNA-binding proteins associated with EVs (66), is
a reminder that the field should keep an open mind.

We have recently shown that H. bakeri EV sRNAs are
mainly 5′ triphosphate species that are bound to a non-
conventional worm Argonaute, which is unlikely to func-
tion like a miRNA Argonaute (31). We now show that these
parasite sRNA sequences are stably detected inside mouse
cells and future experiments will focus on understanding
what these foreign RNA messages are doing to the host.

DATA AVAILABILITY

The new sRNA-Seq data produced for this paper are avail-
able through NCBI’s GEO under accession GSE124506.
The sRNA-Seq data from other publications is referenced
in Table 1. The main scripts for the analyses presented in this
paper are available in the repository: https://github.com/
ObedRamirez/Disentangling-sRNA-Seq

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We would like to thank Araceli Fernández Cortés for sup-
port using the Mazorka HPC cluster at Langebio. We also
want to acknowledge Pablo Manuel González de la Rosa
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