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The majority of antiviral therapeutics target conserved viral
proteins, however, this approach confers selective pressure on
the virus and increases the probability of antiviral drug resis-
tance. An alternative therapeutic strategy is to target the
host-encoded factors that are required for virus infection,
thus minimizing the opportunity for viral mutations that
escape drug activity. MicroRNAs (miRNAs) are small noncod-
ing RNAs that play diverse roles in normal and disease biology,
and they generally operate through the post-transcriptional
regulation of mRNA targets. We have previously identified
cellular miRNAs that have antiviral activity against a broad
range of herpesvirus infections, and here we extend the anti-
viral profile of a number of these miRNAs against influenza
and respiratory syncytial virus. From these screening experi-
ments, we identified broad-spectrum antiviral miRNAs that
caused >75% viral suppression in all strains tested, and we
examined their mechanism of action using reverse-phase
protein array analysis. Targets of lead candidates, miR-124,
miR-24, and miR-744, were identified within the p38
mitogen-activated protein kinase (MAPK) signaling pathway,
and this work identified MAPK-activated protein kinase 2 as
a broad-spectrum antiviral target required for both influenza
and respiratory syncytial virus (RSV) infection.
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INTRODUCTION
Since the discovery of microRNAs (miRNAs) in Caenorhabditis ele-
gans in 1993, these molecules have been shown to play many impor-
tant roles in stress and disease, including virus infection.1 The
miRNAs are small noncoding RNAs that normally bind to short re-
gions of sequence similarity in mRNA targets to inhibit translation.2

Emerging non-canonical functions of miRNAs have also been
demonstrated, and multiple viruses have evolved to exploit the activ-
ity of host miRNAs for use in their life cycles. For example, hepatitis C
virus encodes binding sites for liver-specific miR-122 to stabilize the
viral genome, stimulate viral translation within the liver, and prevent
the induction of innate immune responses.3–5 In addition, Eastern
equine encephalitis virus has been shown to encode a myeloid-spe-
256 Molecular Therapy: Nucleic Acids Vol. 7 June 2017 ª 2017 The Auth
This is an open access article under the CC BY license (http://creativec
cific miRNA-binding site in its genome to limit replication and,
thereby, suppress innate immune induction in myeloid cells.6 The
therapeutic capacity of miRNA manipulation in viral infection has
largely been explored in the context of blocking the interactions be-
tween a host miRNA and a viral sequence. However, in several cases
it has been shown that viruses can also encode in their genomes inhib-
itors against specific host miRNAs, highlighting the natural antiviral
properties of some members of this class of molecule.7

The use of miRNAs to target host factors that are utilized by viruses to
promote infection and virus replication is a developing antiviral strat-
egy, as it is hypothesized to overcome the selective pressure and sub-
sequent drug resistance seen with direct virus-targeting antivirals.8

Several studies have already demonstrated the feasibility of this
approach, such as miR-155 suppression of heterologous nuclear ribo-
nucleoprotein C1/C2, which is critical for cytoplasmic poliovirus
replication,9 and Japanese encephalitis virus inhibition by miR-33a-
5p downregulation of eukaryotic translation elongation factor 1A1,
which stabilizes the components of the viral replicase complex.10

There is an unmet clinical need for novel antiviral therapeutics to treat
respiratory virus infection, particularly agents that could be effective
against multiple viral strains and in scenarios of co-infection. We
have previously identifiedmiRNAs that have broad-spectrum antiviral
activity against herpesviruses,11 andhere we present data extending the
antiviral profile of a number of thesemiRNAs against influenzaA virus
(IAV) and respiratory syncytial virus (RSV). Several miRNAs were
identified that cause suppression of viral replication in all respiratory
viruses screened. Investigation into the miRNA antiviral mechanism
of action identified the p38 mitogen-activated protein kinase
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Table 1. The miRNAs Previously Identified as Antiviral against MCMV, MHV-68, and HSV-1

miRNA Sequence MCMV Inhibition (%) MHV-68 Inhibition (%) HSV-1 Inhibition (%)

miR-24 UGGCUCAGUUCAGCAGGAAC 24 84a 74

miR-27b UUCACAGUGGCUAAGUUCUGC 33 56 52

miR-28 AAGGAGCUCACAGUCUAUUGAG 63a 80a 81

miR-30a-3p CUUUCAGUCGGAUGUUUGCAGC 36 52 43

miR-34b UAGGCAGUGUAAUUAGCUGAU 42a 84a 50

miR-103 AGCAGCAUUGUACAGGGCUAUGA 60a 40 60a

miR-107 AGCAGCAUUGUACAGGGCUAUCA 67a 35 75

miR-124a UAAGGCACGCGGUGAAUGC 32 87a 46

miR-128a UCACAGUGAACCGGUCUCUUU 59a 43 72

miR-129-5p CUUUUUGCGGUCUGGGCUUGC 42a 62 70a

miR-155 UUAAUGCUAAUUGUGAUAGGGGU 43a 38 65

miR-199a-3p UACAGUAGUCUGCACAUUGG 43a 76 78a

miR-214 ACAGCAGGCACAGACAGGCAGU 47a 87a 16

miR-222 AGCUACAUCUGGCUACUGGGU 38 54 70

miR-223 UGUCAGUUUGUCAAAUACCCCA 35a 51 49

miR-345 GCUGACCCCUAGUCCAGUGCUU 66a 87a 71

miR-346 UGUCUGCCCGAGUGCCUGCCUCU 66a 92a 91a

miR-452 UGUUUGCAGAGGAAACUGAG 49a 62 43

miR-542-5pb CUCGGGGAUCAUCAUGUCA 76a 94a 86a

miR-744 UGCGGGGCUAGGGCUAACAGCA 47a 93a 75a

Percentage inhibition is shown as comparison to average negative transfection control based on suppression of virus using GFP reporter assays, as described in Santhakumar et al.11
aAntiviral ranking was statistically significant when comparing replicate viral screens (p < 0.05).
bThe mmu-miR-542-5p sequence from miRBase was used in screening which differs by 1 nt from hsa-miR-542-5p.
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(MAPK) host pathway as a target of three broad-spectrum miRNAs
from distinct miRNA families. Furthermore, we examined p38
MAPK downstream kinases, MAPK-activated protein kinase (MK)
2 and 3 for their importance in IAV and RSV infection. Our results
demonstrate that host-targeting antiviral miRNAs could provide
a complementary strategy for controlling infection, and they further
illuminate host factors that are important in respiratory virus infection.

RESULTS
Screening for Antiviral miRNAs against IAV and RSV

We previously conducted a screen of 312 mouse miRNAs for their
effect on herpesvirus infection, and we identified miRNA mimics
that had antiviral or proviral activity.11 Here we further screen a subset
of these miRNAs that were selected based on their conservation be-
tween mouse and human genomes and the fact that they caused a
reduction in viral growth in all three herpesviruses tested (murine cyto-
megalovirus [MCMV],murine gammaherpesvirus-68 [MHV-68], and
herpes simplex virus 1 [HSV-1]) (Table 1). As the genomes of these
viruses share little sequence similarity, it was proposed that the impact
of the selected miRNAs on viral growth relates to their regulation of
host genes, rather than direct interactions with viral elements.

To examine the breadth of these antiviral activities in other viral in-
fections, we screened the miRNA mimic panel against IAV and
RSV in human cells (Figure 1). The adenocarcinomic human alveolar
basal epithelial cell line A549 was used as these cells are amenable to
small RNA transfection and are permissive to the majority of lab-
adapted IAV and RSV strains. A549 cells were transfected with
25 nM miRNA mimics 48 hr prior to infection with influenza
A/WSN/1933 (WSN) H1N1, and viral titer was assessed at 24 hr
post-infection (hpi). Of the 20 miRNAs screened based on their
repressive properties in herpesvirus infection, eight also caused signif-
icant suppression of IAVWSN when using a cutoff of 75% reduction
compared to negative controls (Figure 1A).

Further miRNA mimic screening was conducted with two additional
strains of influenza, A/Puerto Rico/8/1934 (PR8) H1N1 (Figure 1B)
and A/Udorn/307/1972 (Udorn) H3N2 (Figure 1C). When the
same 75% reduction in viral titer cutoff was applied to these screens,
six and ten miRNAs were classified as causing suppression of PR8
H1N1 and Udorn H3N2, respectively. This identified five miRNAs
with antiviral effects across all three IAV strains as follows: miR-
542-5p, miR-24, miR-124, miR-744, and miR-155 (>75% reduction;
Table 2).

The same panel of miRNAs was subsequently screened against two
different strains of RSV: the prototypic lab-adapted strain RSV-A2
(Figure 1D) and the clinically relevant strain RSV BT2a (Figure 1E).
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Figure 1. Reductions in IAV and RSV Titer following Treatments with miRNA Mimics

A549 cells were transfected with 25 nMmiRNAmimics or controls. A direct-targeting viral siRNA (siIAV or siRSV) served as a positive antiviral control (gray bar), while negative

controls were as follows: C. elegans miRNA mimic 1 (C.elegans 1), RISC-free siRNA, Lipofectamine, and virus infection alone (black bars). (A–E) After 48-hr transfection,

media was removed and cells were infected with (A) IAV WSN H1N1 at MOI 0.1 for 24 hr, (B) IAV PR8 H1N1 at MOI 0.1 for 12 hr, (C) IAV Udorn H3N2 at MOI 0.1 for 24 hr,

(D) RSV-A2 at MOI 0.01 for 72 hr, and (E) RSV-BT2a at MOI 0.1 for 72 hr, when the supernatant was removed and assayed for virus. (F) Uninfected cells were analyzed

for cell viability at 48 hr post-transfection (n = 12). The results are displayed to show themost potent antiviral mimics (from left to right along the x axis), with solid lines denoting

0% inhibition, dotted lines denoting the 75% activity cutoff, and blue bars highlighting miRNAs chosen for further analysis. Viral titer results for each virus are shown as the

mean ± SEM of n = 6. Significant differences between virus control and miRNA mimics and siRNAs are indicated (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001,

one-way ANOVA).

Molecular Therapy: Nucleic Acids
There were eight mimics that displayed a >75% reduction in both
RSV strains: miR-124a, miR-542-5p, miR-744, miR-155, miR-346,
miR-452, miR-128a, and miR-28 (Table 2). Cell viability assays were
performed in parallel with the screening experiments, and, consistent
with our previous results in the NIH 3T3 mouse embryo fibroblast
cell line,11 none of the panel of 20 miRNAs resulted in cellular toxicity
after 48 hr transfection in A549 cells (Figure 1F).
258 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
Based on the screening data comparison shown in Table 2, four
miRNA mimics, miR-124a, miR-542-5p, miR-744, and miR-155,
had broad-spectrum antiviral activity against all IAV and RSV strains
tested. Of these four miRNAs, miR-155 has been well documented to
regulate innate immunity, enhancing IFN-inducible gene expres-
sion.12,13 Although this miRNA has antiviral properties, we elected
to focus on the other miRNAs that may inhibit viral infection without



Table 2. Antiviral Activity of miRNA Panel against IAV and RSV

miRNA

Influenza RSV

H1N1
WSN (%)

H1N1
PR8 (%)

H3N2
Udorn (%) RSV-A2 (%)

RSV
BT2a (%)

miR-124a 92* 82* 95* 96* 98*

miR-542-5p 86* 75* 87* 92* 83*

miR-744 80* 82* 82* 87* 94*

miR-155 98* 78* 92* 96* 98*

miR-24a 92* 91* 90* 66 �68

miR-346 80* 70 80* 77* 76*

miR-452 72 49 41 85* 90*

miR-28 70 29 70 88* 90*

miR-128a 9 11 64 90* 93*

miR-223 54 69 90* 78* �10

miR-103 80* 43 79* 18 �4

miR-129-5p 65 21 �5 65 94*

miR-107 87* 44 73 12 57

miR-27b 63 83* 57 32 72

miR-345 15 60 71 49 84*

miR-199a-5p �44 61 89* 43 �72

miR-30a-3p 72 69 80* 66 64

miR-34b 26 55 24 9 53

miR-199a-3p �93 50 57 25 9

miR-222 42 41 61 3 �31

miR-214 47 Nt Nt 23 50

Values denote average percentage reduction in viral titer compared to negative control
(n = 6). Nt indicates not tested and negative values denote increases in viral titer
compared to negative control. The asterisks indicate >75% reduction in viral titer
compared to negative control.
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stimulating an interferon response. In addition, miR-24 exhibited
antiviral activity against all influenza strains tested here. Although
we did not observe >75% suppression of RSV, this miRNA was pre-
viously shown to be regulated by RSV infection,14 and it was subse-
quently chosen for further analysis. Therefore, the following four
antiviral miRNAmimics were selected for further analysis of their po-
tential mode of action: miR-542-5p, miR-744, miR-124a, andmiR-24.

Antiviral miRNA Mechanism of Action

To gain insight on the host pathways targeted by the four antiviral
miRNA mimics, a reverse-phase protein array (RPPA) was used to
screen the expression levels of global signaling pathway markers.
The advantage of conducting the RPPA instead of a microarray or
RNA sequencing (RNA-seq) was that it enabled protein levels to be
examined and, in several cases, distinguished the phosphorylation
state of proteins, which is often relevant for the activation status of
signaling pathways.

Human A549 cells were either left untreated or transfected with
miRNA mimics and mock infected or infected with IAV WSN
H1N1. Samples were collected at 4 and 24 hpi in order to assess the
effects of the miRNAs at both early and late time points. In total,
45 proteins were examined using 60 validated antibodies, 15 of which
detected phosphorylated proteins. These antibodies span global
signaling pathways associated with metabolism, cell cycle, and im-
mune responses (Table S1), and 59 of the antibodies yielded signal
suitable for quantitation (Materials and Methods; Table S2). As a
validation of the approach, RPPA proteins were examined for
changes of >25% in expression upon infection compared to levels pre-
viously reported in the literature (Table S3). As expected, several
pathways were activated upon infection, including PKC, which is
rapidly activated by influenza hemagglutinin15 and is critical for en-
veloped virus entry;16,17 ERK, which is upregulated by the influenza
matrix protein18 and is essential for viral RNP formation and nuclear
export;19,20 and nuclear factor kB (NF-kB), which has been shown to
be crucial for IAV infection21–23 (Figure 2A, top). In addition, several
markers that have previously been shown to be downregulated upon
IAV infection were also suppressed in the RPPA study, including
JAK124–26 and b-tubulin27,28 (Figure 2A, bottom).

Changes in the global pathway signaling markers caused by miRNA
treatment at 24 hpi are shown in Figure 2B, which were normalized
to the RISC free non-targeting short interfering (siRNA) transfection
control. Overall, the protein expression alterations caused by miR-
744, miR-124a, and miR-24 treatment in IAV-infected cells had a
higher correlation of similarity than any of these miRNAs with
miR-542 (Figure 2B). One pathway that demonstrated commonality
among these three miRNAs was suppression of the p38 MAPK
pathway. Total p38 MAPK protein expression and its downstream
signaling partner MK2 were downregulated by miR-744, miR-124,
and miR-24 at 24 hpi (Figures 2C and 2D).

The p38 MAPK Pathway Is Suppressed by miR-744, miR-124a,

and miR-24 Mimic Treatment in IAV Infection

It is well documented that the p38 MAPK pathway is activated by
various external stimuli, including pro-inflammatory cytokines and
viral infection.29,30 Upon activation of p38 MAPK, the phosphory-
lated protein regulates downstream kinases MK2 and MK3, mitogen-
and stress-activated protein kinases (MSKs) 1 and 2, and several tran-
scription factors, including activating transcription factor 2 (ATF-2),
signal transducer and activator of transcription 1 (STAT1), and Myc
(Figure 3A). This pathway is known to be upregulated upon influenza
virus infection (Figure S1), with the suppression of p38 MAPK31,32 or
the downstream target MK2,33 causing the attenuation of influenza
virus replication. Therefore, it was hypothesized that at least part of
the miRNA antiviral activity observed following influenza infection
may be attributed to suppression of the p38 MAPK pathway.

To further validate the downregulation of p38MAPK andMK2 by the
miRNA mimics, cells were transfected with miR-744, miR-124a, and
miR-24 mimics or inhibitors, and changes in the p38 MAPK pathway
were assessed during IAV infection by western blot (Figures 3B–3H).
As the RPPA results were similar between the 10 and 25 nM miRNA
mimic treatments (Table S2), a concentration of 10 nM was used for
Molecular Therapy: Nucleic Acids Vol. 7 June 2017 259
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Figure 2. Analysis of Changes in Global Pathway Signaling Molecules upon

Infection or miRNA Transfection

(A) Venn diagram of RPPA markers in untransfected cells whose levels were

increased or decreased by >25% upon infection when compared to the uninfected

average. (B) Cells were transfected with 25 nM miRNA mimics or controls and

subsequently infected with IAV WSN at MOI 3. Heatmap shows protein levels

analyzed by RPPA at 24 hpi, normalized to RISC-free siRNA treatment. Hierarchical

clustering was conducted with Pearson correlation. (C and D) Relative fluorescence

intensity of (C) total p-p38 MAPK + p38 MAPK or (D) MAPKAPK2 protein levels from

RPPA examination is shown as the mean ± SEM of n = 2.
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all further experiments. In agreement with the RPPA results, miR-
744, miR-124a, and miR-24 miRNA mimic treatments of IAV-
infected cells caused a significant decrease in phosphorylated p38
MAPK (Figure 3C) and total MK2 levels (Figure 3E). Analysis of
p38MAPK levels showed thatmiR-744,miR-124a, andmiR-24mimic
treatments caused a reduction in p38 MAPK expression, with treat-
ment with miR-124a causing a significant decrease in protein levels
260 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
(Figure 3D). These results demonstrate that miR-744, miR-124a,
and miR-24 mimics suppress both p38 MAPK expression and activa-
tion. The inhibitors of miR-744, miR-124a, andmiR-24 demonstrated
unchanging or significant increased expression of phosphorylated
p38 MAPK (Figure 3C) and total MK2 levels (Figure 3E).

All three of these miRNAs have been detected in A549 cells by small
RNA sequencing, although at relatively low levels compared to more
dominant miRNAs in this cell type (GEO: GSM1401418).34 Consis-
tent with the miRNA mimic treatment decrease in MK2, we also
observed a reduction in phosphorylation of heat shock protein 27
(Hsp27), a cytoplasmic substrate of MK2 (Figure 3F). Hsp27 has
been shown to mediate cytoskeletal stability, cell motility, apoptosis,
and IL-1-induced expression of pro-inflammatory mediators.35–38 As
an effector of MK2 activity, its phosphorylation was investigated to
determine whether the reduction of total MK2 levels resulted in
downstream downregulation of Hsp27. Activation of Hsp27 was
significantly decreased by miR-744 and miR-124a, but not by miR-
24 treatment (Figure 3F). In addition, the transcription factor Myc
that is activated by p38 MAPK was decreased by miR-744 and
miR-124a treatments (Figure 3G). This transcription factor has
been shown via chromatin immunoprecipitation sequencing (ChIP-
seq) analysis to potentially control MK2 expression, and its downre-
gulation may result in the decrease of MK2 expression.39 Together
these results suggest that, while miR-24, miR-124a, and miR-744 all
result in downregulation of the p38 MAPK pathway, these miRNAs
may operate by targeting different pathway members to facilitate
MK2 suppression.

MK2 Suppression Is Only Partly Responsible for the miRNA

Antiviral Activity

To examine whether the antiviral activity of the miRNAs could be ex-
plained solely by their effects on MK2, a comparison was conducted
between the miRNA mimics and an siRNA directly targeting MK2
(siMK2). As MK3 has been hypothesized to be a homologous kinase
of MK2 and share many of the same downstream effectors, the effect
of its suppression on IAV replication was also investigated with an
siRNA (siMK3).

Changes in MK2 and MK3 expression were assessed by western blot
during IAV infection in cells transfected with siRNAs or miRNA
mimics (Figure 4A). Consistent with our previous results, treatments
with the miR-744, miR-124a, and miR-24 mimics caused a significant
reduction in MK2 expression when compared to the negative trans-
fection control (67%, 45%, and 62% reductions, respectively; Fig-
ure 4B). As expected, silencing of MK2 caused by the MK2 siRNA
(90% reduction) was superior to any of the miRNAmimic treatments
(Figure 4B). Analysis of the MK3 protein levels showed that the
siMK3 treatment caused a significant decrease in MK3 expression
(89% reduction), while miR-542, miR-744, miR-124a, and miR-24
treatments had no significant effect on MK3 levels (Figure 4C).

IAV titer was examined at 24 hpi, and treatment with siMK3 did not
cause a significant decrease in IAV titer (Figure 4D), suggesting that



Figure 3. Validation of p38 MAPK Pathway Downregulation by Antiviral miRNA Mimics

(A) p38 MAPK-signaling pathway including kinases, transcription factors, and other genes induced or activated by p38 stimuli. (B) Western blot analysis of p38 MAPK

pathway mediators in A549 cells that were transfected with 10 nM miRNA mimics, 25 nM inhibitors, or controls and subsequently infected with IAV WSN at MOI 3 for 24 hr.

(C–G) Quantitative analysis of (C) p-p38MAPK, (D) p38MAPK, (E) MK2, (F) pHsp27, and (G) Myc total protein levels normalized to GAPDH shown as themean ±SEM of n = 4.

(H) Summary of quantitative analysis with X denoting significant downregulation. Significant differences between RISC-free siRNA control and miRNA mimics and inhibitors

are indicated (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, one-way ANOVA).
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this protein does not have an essential function in IAV replication.
Conversely, miR-542, miR-744, miR-124a, miR-24, and siMK2 treat-
ments caused a significant decrease in IAV replication. However,
while siMK2 treatment resulted in significantly decreased MK2 pro-
tein expression when compared to miR-124a treatment (p < 0.01; Fig-
ure 4B), it did not have superior antiviral activity (Figure 4D).
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Figure 4. Role of MK2 Suppression in IAV Infection

(A) Representative western blot analysis of MK2 and MK3

expression in A549 cells transfected with 10 nM miRNA

mimics, siMK2, siMK3, or controls for 48 hr. Cells were

subsequently infected with IAV WSN at MOI 3 for 24 hr.

(B and C) Quantitative analysis of (B) MK2 or (C) MK3 total

protein levels during IAV infection normalized to GAPDH

shown as the mean ± SEM of n = 4. (D) IAV viral titer is

shown as the mean ± SEM of n = 4. Significant differ-

ences between RISC-free siRNA control and miRNA or

siRNA treatments are indicated (*p < 0.05, **p < 0.01, and

****p < 0.0001, one-way ANOVA).
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Together these results confirm the previous finding that MK2 sup-
pression is antiviral in the context of IAV infection, and they also sug-
gest that miR-744, miR-124a, and miR-24 antiviral activity is due, at
least in part, to MK2 targeting, in addition to concurrent targeting of
other proteins important in IAV infection.

MK2 Suppression Is Antiviral for RSV Infection

The importance of p38 MAPK in RSV infection has been previously
established, with p38 MAPK inhibitors causing a significant decrease
in RSV replication.32 However, the role of downstream MK2 is less
clear, as studies have also shown that RSV sequesters phosphorylated
p38 MAPK into cytoplasmic inclusion bodies upon infection, which
might suggest that suppression of downstream kinases would be
advantageous for the virus.40 Therefore, an analysis of the potential
antiviral properties of direct MK2 suppression in RSV infection was
conducted to determine whether this pathway could be responsible
for a portion of the antiviral effects shown by miR-744, miR-124a,
and miR-24.

Cells were transfected with siRNAs targeting MK2 and MK3 or the
miRNA mimics, and MK2 and MK3 expression was assessed during
RSV replication by western blot (Figure 5A). In agreement with
the results in IAV infection, treatments with miR-744, miR-124a,
miR-24, and siMK2 caused a significant decrease in MK2 protein
expression (Figure 5B), while treatment with siMK3 significantly
decreased the targeted MK3 levels (Figure 5C). While miR-744
and miR-124a mimic treatments both showed a decrease in MK3
expression, these decreases did not reach statistical significance
(Figure 5C).

An examination of RSV titers at 24 hpi showed that treatment with
siMK3 did not cause a significant reduction of RSV (Figure 5D), indi-
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cating that this protein does not have a signifi-
cant function in RSV replication. Conversely,
treatment with the MK2-targeting siRNA
siMK2 resulted in a significant reduction of
RSV titers (Figure 5D). As seen in IAV infec-
tion, while miR-744, miR-124a, and miR-24
did not result in the same level of MK2 protein
downregulation when compared to the directly
targeting siMK2 (Figure 5B), these miRNAs had equal or superior
suppression of RSV replication (Figure 5D).

DISCUSSION
In light of the constant emergence of new respiratory viruses, and the
limited availability and efficacy of current vaccines and antiviral drugs
against the majority of these, there is a demand for new targeting stra-
tegies with broad-spectrum antiviral activity.

We have previously identified a panel of 20 miRNAs that caused a
reduction in viral growth of three different herpesviruses (Table 1).11

In this study, we screened the panel of 20 miRNA mimics against
IAV H1N1 WSN, IAV H1N1 PR8, IAV H3N2 Udorn, RSV-A2,
and RSV BT2a, and we selected for further analysis one miRNA
that had antiviral activity of >75% against all IAV strains tested
and three miRNAs that had antiviral activity of >75% against
both IAV and RSV (Figure 1). Importantly, none of the panel of
20 miRNAs demonstrated cellular toxicity in A549 (Figure 1F)
and NIH 3T3 cells.11 The four selected miRNAs, miR-24, miR-
124a, miR-542, and miR-744, are from unrelated miRNA families
and are not known to be co-regulated.41 While miR-24 and miR-
124a were previously shown to have important roles in cardiac,
neurological, and oncological diseases,42–45 the targets of miR-744
and miR-542 have not yet been extensively investigated.

An RPPA analysis provided initial insights into the potential mecha-
nism of action of the antiviral miRNAs during influenza virus
infection. The effects of miR-124, miR-24, and miR-744 on protein
expression were more closely related than those of miR-542, based
on clustering analysis. In particular, treatments with the three
former miRNAs regulated the p38 MAPK pathway, causing the
downregulation of both p38 MAPK and its downstream kinase



Figure 5. Role of MK2 Suppression in RSV Infection

(A) Representative western blot analysis of MK2 and MK3

expression in A549 cells transfected with 10 nM miRNA

mimics, siMK2, siMK3, or controls for 48 hr. Cells were

subsequently infected with RSV-A2 at MOI 3 for 24 hr.

(B and C) Quantitative analysis of (B) MK2 or (C) MK3 total

protein levels in RSV infection normalized to GAPDH

shown as the mean ± SEM of n = 4. (D) RSV viral titers are

shown as the mean ± SEM of n = 3. Significant differ-

ences between RISC-free siRNA control and miRNA or

siRNA treatments are indicated (*p < 0.05, **p < 0.01, and

****p < 0.0001, one-way ANOVA).
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MK2. Validation of p38 MAPK and MK2 suppression and further
analysis of additional pathway factors showed that each miRNA
caused a distinct pattern of p38MAPK pathway downregulation (Fig-
ure 3), suggesting they may operate by different factors. Previous
research has identified p38a (MAPK14), the dominant form of p38
MAPK, as a direct target of miR-2446 and miR-124a.47,48 In addition,
as MK2 is known to stabilize p38 MAPK,49 it could be expected that
the significant decrease seen in MK2 by miR-24, miR-124a, and miR-
744 treatments may also result in a reduction in p38 MAPK expres-
sion. Reciprocally, MK2 levels are also known to be decreased in
p38a-deficient cells,50 which may account for the significant decrease
in MK2 expression observed (Figure 3). An analysis of the 30 UTR of
the mapkapk2 gene via TargetScanHuman51 revealed target sites for
miR-124a and miR-24, suggesting possible direct interactions. An
additional mechanism of total MK2 suppression may be via reduc-
tions in Myc levels, as previous ChIP-seq analysis of Myc has iden-
tified it as a potential transcription factor regulating MK2 expres-
sion.39 Furthermore, Myc is a previously validated target of miR-
2452 and miR-744.53 Surprisingly, analysis of Myc expression showed
that miR-24 treatment did not result in a significant decrease in Myc
protein levels (Figure 3). However, miR-744 and miR-124a treat-
ments caused a significant decrease in Myc expression, which may
explain the resulting reduction in MK2 expression. As Myc has pre-
viously been shown to be a host factor essential for influenza virus
replication, a reduction in Myc expression would also be expected
to cause virus attenuation.54

As mentioned above, the reductions of p38 MAPK and MK2 expres-
sion were previously shown to be antiviral in influenza virus infec-
tion.32,33 In agreement with these results, this study found that
siRNA silencing of MK2 caused a significant decrease in IAV infec-
Molecu
tion (Figure 4). Subsequent analysis of MK2
silencing during RSV infection showed for the
first time that MK2 suppression was also anti-
viral in the context of RSV infection (Figure 5).
Indeed, a downregulation of MK2 may be
responsible in part for the broad-spectrum
antiviral effects seen by miR-124a, miR-744,
and miR-24 treatments. Interestingly, MK2
suppression is also antiviral in adenovirus
infection due to the requirement of Hsp27 activation for virus nu-
clear targeting.55

An important discovery from this study was that, while a portion of
the broad-spectrum antiviral activity of miR-744, miR-124a, and
miR-24 resulted from the suppression of MK2, the entirety of each
miRNA antiviral activity could not be attributed to the suppression
of this single host factor. The RPPA study identified additional pro-
teins that may be targeted by these miRNAs, such as miR-744 target-
ing of Akt or miR-124a and miR-24 suppression of GSK-3b, as both
of these factors were previously shown to be important for influenza
virus entry.56,57 Other previously identified roles of these miRNAs in
viral infection include miR-24 suppression of Kruppel-like factor 6,
which is induced by RSV infection to induce cell-cycle arrest,14 as
well as the suppression of furin bymiR-24, which is required for influ-
enza virus activation,58 and miR-124a attenuation of Japanese en-
cephalitis virus (JEV) via targeting dynamin2, which is required for
efficient JEV replication.59 Therefore, it is highly probable that the
broad-spectrum antiviral activity exhibited by these miRNA mimics
is caused by their ability to downregulate multiple host factors that
are essential for numerous DNA and RNA viral infections. A com-
plete understanding of miRNA function may, therefore, require an
in depth investigation of the multiple targets that are important in
each infection setting. This may also hold true in developing more
effective antiviral therapeutics.

In conclusion, this study has extended the broad-spectrum antiviral
activity of four miRNA mimics in the context of IAV and RSV infec-
tion. For three of these miRNAs, a portion of their antiviral activity
was attributed to their suppression of the p38 MAPK pathway and
MK2 in particular. This work therefore pinpoints additional host
lar Therapy: Nucleic Acids Vol. 7 June 2017 263
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factors with broad-spectrum antiviral activity, and it demonstrates
that MK2 suppression is antiviral in RSV infection. Further studies
are required to investigate the effects of miR-124a, miR-24, miR-
744, and miR-542 in primary cells and/or an animal model of virus
infection and to explore whether their antiviral activity extends to
the entire range of viruses that cause respiratory infections and lack
treatment strategies.

MATERIALS AND METHODS
Antibodies, miRNAs, and siRNAs

RISC-free (non-targeting) siRNA, murine and Caenorhabditis elegans
miRNA inhibitors, and mimics were obtained from Dharmacon
Products, GE Life Sciences. IAV-60 and RSV-targeting61 siRNAs
were obtained from QIAGEN, MK2-targeting siRNA was obtained
from Sigma-Aldrich, and the MK3-targeting pool of siRNAs was
obtained from Dharmacon.

The following primary antibodies were obtained from Cell Signaling
Technology: Phospho-p38 MAPK (Thr180/Tyr182, clone 3D7),
GAPDH (clone 14C10), c-Myc (clone D84C12), Phospho-CREB
(clone 87G3), MK3 (clone D54E4), and Phospho-MK2 (Thr334).
Other primary antibodies were as follows: biotinylated anti-RSV anti-
body (AbD Serotec), Phospho-HSP27 (S86, Abcam), and MK2 (clone
E341, Abcam). Secondary antibodies were Alexa Fluor 680-conju-
gated anti-rabbit IgG antibody (Invitrogen) and Alexa Fluor 800-con-
jugated anti-mouse IgG antibody (Invitrogen).

Cell Culture and Viruses

A549 human lung epithelial cells (ATCC), Madin-Darby canine
kidney (MDCK) cells (ATCC), and human epithelial type 2
(HEp-2) cells were cultured in DMEM (Sigma) supplemented with
10% heat-inactivated fetal bovine serum (FBS; Hyclone, GE Health-
care) and 1% L-Glutamine (Gibco, Life Technologies) at 37�C and
5% CO2. All cells were confirmed to be free of mycoplasma via
PCR detection with primers (forward: 50-GGGAGCAAACAGGAT
TAGATACCC-30 and reverse: 50-TGCACCATCTGTCACTCTGT
TAACCTC-30), as previously described.62

Viruses used in the study were influenza A strains A/Puerto Rico/8/
1934 H1N1 (PR8), A/WSN/1933 H1N1 (WSN), and A/Udorn/307/
1972 H3N2 (Udorn) as well as RSV-A2 (VR-1540, ATCC) and
RSV clinical strain BT2a.63

Transfection

The miRNA mimics or inhibitors were reverse-transfected into A549
cells in 0.3% Lipofectamine 2000 (Invitrogen). Transfected cells were
incubated for 48 hr at 37�C and 5% CO2 before cell viability analysis
or viral challenge.

Infection Assays

Cells were infected by the addition of virus in a minimal volume at the
appropriate dilution to give the indicated MOI for 1 hr at 37�C. After
1 hr cells were washed with PBS and replenished with fresh media
without virus. Cells used to study IAV were cultured post-infection
264 Molecular Therapy: Nucleic Acids Vol. 7 June 2017
in DMEM, and cells used to study RSV were cultured post-infection
in DMEM supplemented with 5% FBS. Supernatants were harvested
at the indicated time post-infection and the viral titers were deter-
mined by plaque assay.

IAV plaque assays were performed with 10-fold serial dilutions of
the virus samples on a confluent monolayer of MDCK cells,64 overlaid
with MEM agarose overlay media containing 0.5% BSA (Fraction V,
Fisher Scientific) and 1 mg/ml N-acetyl trypsin. Cells were incubated
for 72 hr, and then plaques were fixed and visualized by staining with
0.1% toluidine blue O (Sigma). RSV immuno-plaque assays were
performed with 2-fold serial dilutions of the virus samples on a
confluent monolayer of HEp-2 cells. Cells were incubated for 24 hr
in DMEM, and then they were probed with 1:200 biotinylated RSV
antibody and stained with 1:500 ExtrAvidin Peroxidase, with visual-
ization of plaques by the addition of 3-Amino-9-EthylCarbazole
(AEC) substrate.
Cell Viability Assay

Following reverse transfection, the effect of miRNAs on cell viability
was assessed using the cell titer blue assay (Promega) as per the man-
ufacturer’s instructions.
RPPA

Protein concentrations were determined by Coomassie-plus assay
(Thermo Scientific), and samples were diluted with buffer CSBL1 to
0.15 mg/mL. The 60 validated signaling pathway markers listed in
Table S1 were profiled in a standard ZeptoMARK, as previously
described.65 Briefly, analysis of raw excitation light intensity data
was conducted by normalizing the net signal intensity of each sample.
For each lysate sample represented by a total of four spots at four
dilutions, a mean referenced fluorescence intensity (RFI value) was
calculated based on a weighted linear fit through the four normalized
sample spots and markers, with negative RFI values excluded. These
RFI values were subsequently normalized against Prohibitin house-
keeping protein prior to the comparison of analytes across the entire
sample series. For heatmap analysis, each treatment group was
compared to the normalized RFI values of RISC-free siRNA control
group.
Western Blot

Cells were lysed with cell lysis buffer (300 mMNaCl, 50mMTris-HCl
[pH 7.4], and 0.5% Triton X-100) containing protease (cOmplete,
Roche) and phosphatase inhibitors (PhosStop, Roche), spun, and
supernatant was collected. Total cell lysates were separated by
SDS-PAGE and transferred to Immobilon-FLmembranes (Millipore)
using a Trans-Blot System (Bio-Rad). Membranes were blocked
in Tris-buffered saline containing 0.5% Tween 20 and 5% BSA (Frac-
tion V, Fisher Scientific) for 2 hr at room temperature. Primary
antibody binding was achieved overnight at 4�C, whereas far-red
fluorescent secondary antibody binding was achieved in 1 hr at
room temperature. Odyssey (LI-COR Biosciences) was used for
visualization.
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Statistical Analysis

Statistics data are expressed as means ± SEM. Groups were compared
using one-way ANOVA; p values of <0.05 were considered
significant.
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