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ABSTRACT
MicroRNAs (miRNAs) are small non-coding RNAs, 18–23
nucleotides long, which act as post-transcriptional
regulators of gene expression. miRNAs are strongly
implicated in the pathogenesis of many common
diseases, including IBDs. This review aims to outline the
history, biogenesis and regulation of miRNAs. The role of
miRNAs in the development and regulation of the innate
and adaptive immune system is discussed, with a
particular focus on mechanisms pertinent to IBD and the
potential translational applications.

INTRODUCTION
The IBDs, Crohn’s disease (CD) and UC affect an
estimated 2.5–3 million people in Europe, with the
associated annual healthcare costs amounting to
approximately €4.6–5.6 billion.1 The increasing
incidence of early onset disease in the developed
world and of disease in all ages in the developing
world has catalysed studies attempting to character-
ise pathogenic mechanisms. In the last two decades,
international collaborations have been successful in
identifying susceptibility genes for IBD through
genome-wide association studies (GWAS) and sub-
sequently meta-analysis of GWAS and Immunochip
data (http://www.ibdgenetics.org).2 These studies
have been important in highlighting mechanistic
pathways, notably autophagy and innate immunity
in CD and epithelial barrier dysfunction in UC and
have provided clues into new therapeutic strategies.
There is now increasing interest in exploring epi-

genetic mechanisms in common diseases, with
notable progress in studies of DNA methylation,
histone modifications, long intergenic non-coding
RNAs and in characterising the contribution of
microRNAs (miRNAs). miRNAs are short strands
of non-coding RNA (∼22 nt long) encoded in
genomic DNA which post-transcriptionally regulate
expression. The field of miRNA research is expand-
ing rapidly with the number of miRNA-related cita-
tions increasing almost exponentially (figure 1) and
miRNAs have been implicated in neurological dis-
eases, cardiovascular diseases, autoimmune diseases
and cancer.3 With such a wealth of data now avail-
able, reviews have been published on individual
miRNAs in health and disease. miR-21 is perhaps
the most compelling miRNA involved in IBD, with
associations between miR-21 and IBD being repli-
cated in several studies, functional relevance in
mouse models, as well as being highly expressed in
other diseases including cancer. Key miRNAs, such
as miR-21, are the focus of anti-miR therapeutic
development.4–8

Well-designed high-impact publications have
established functional interactions between
miRNAs and key mechanisms implicated by GWAS

in IBD, notably T helper cell (Th)17 mediated
inflammation and autophagy.9 10 The review aims
to outline the history, biogenesis and regulation of
miRNAs. The important role of miRNAs in the
development and regulation of an innate and adap-
tive immune system is discussed, with a particular
focus on IBD pathogenesis and other immune-
mediated diseases. The review will also provide an
insight into the translational applications of
miRNAs as biomarkers and the potential thera-
peutic miRNA application.

MicroRNAs: a historical perspective
miRNAs were first identified in 1993 in the nema-
tode model organism (Caenorhabditis elegans)
using a genetic screen to identify defects in postem-
bryonic development.11–13 It became evident that
lin-4, which emerged as the first described miRNA,
was able to downregulate a nuclear protein called
lin-14, thereby initiating the second stage in larval
development.13 14 By the turn of the century a
second miRNA, let-7, was identified in C. elegans
that appeared to be highly conserved among
species including humans.15 16 At the time of
writing 35 828 mature miRNAs occurring across all
species have been registered in miRbase (http://
mirbase.org, Release 21, accessed June 2014).17

Biogenesis of microRNAs
miRNA genes are located throughout the genome,
either within intronic sequences of protein-coding
genes, within intronic or exonic regions of non-
coding RNAs, or set between independent transcrip-
tion units (intergenic).18 Some miRNAs have their
own promoters and are transcribed independently,
some share promoters with host genes,19 while
others are co-transcribed as a single primary miRNA
transcript.20 The biogenesis of miRNAs from tran-
scription in the nucleus to generation of the mature
miRNA in the cytoplasm is described in figure 2.
In plants, fully complementary binding occurs

when the ‘seed’ region (located near the 50end) of the
miRNA binds to the 30 untranslated region (UTR) of
the target mRNA and this is sufficient for mRNA
degradation to occur. In contrast, in humans,
miRNAs bind to mRNA targets with incomplete
complementarity, which results in mRNA destabilisa-
tion and translational inhibition.53 Other regions of
the mRNA can also contain functional miRNA
binding sites, including the 50UTR and the amino
acid coding sequence. Furthermore, beyond seed site
pairing, the centre and the 30end of the miRNA
sequence can contribute to target recognition.54–56

Under certain conditions such as cell cycle arrest,
miRNAs can alter their regulatory role from transla-
tional inhibition to upregulation of translation of
target mRNAs.57 Studies have also shown that
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miRNAs influence gene expression at the post-transcriptional
level, and may interfere with the process of transcription.58

Single nucleotide polymorphisms (SNPs) in pre-miRNA
sequences are rare, occurring in only 10% of all human
pre-miRNAs, and less than 1% of miRNAs have SNPs in their
functional seed region.53 Therefore functional mutations in
miRNAs are unlikely to be tolerated and negative selection may
occur at these loci.

miRNAs affect gene expression
It is estimated that miRNAs regulate more than 60% of protein
coding mRNAs.59 Each miRNA can target hundreds of mRNAs
resulting in mRNA destabilisation and/or inhibition of transla-
tion. Generally, the overall effect on target protein levels is
subtle and can be thought of as ‘fine-tuning’ of cellular mRNA
expression within a cell.60 61 The combinatorial targeting of
genes by miRNAs in this fashion makes them interesting thera-
peutic candidates that in theory may reduce resistance in dis-
eases such as cancer.62

miRNAs regulate important cellular functions such as differ-
entiation, proliferation, signal transduction and apoptosis and
exhibit highly specific regulated patterns of gene expression.63

A number of applications have been developed to predict
mRNA/miRNA interactions and aid in understanding specific
miRNA targets.64

miRNA regulation
At various stages in miRNA biogenesis, several factors can influ-
ence the development of the mature miRNA. Figure 2 depicts
the various steps of biogenesis that are subject to regulation.
These include regulation of transcription, cleavage of the stem
loop structures by Drosha and Dicer enzymes, editing as well as
regulation of miRNA turnover. The regulatory mechanisms
occurring at each stage have been reviewed elsewhere.18 65 Each
of these mechanisms acts as part of a signalling network that
modulates gene expression in response to cellular or environ-
mental changes.

miRNA gene regulatory networks
Over 5400 miRNAs have now been identified with each
miRNA possessing the ability to target multiple gene transcripts.
miRNAs are members of complex gene regulatory networks
(GRNs) and figure 3 summarises these GRNs, comprising of
feedback and feed-forward loops.66 67 69 Certain subcircuits are
evolutionarily favoured and are termed network motifs.67

Coordinated transcriptional and miRNA-mediated gene regula-
tion is a recurrent network motif and fortifies gene regulation in
mammalian genomes.66 Inflammation driven miRNA circuits
are described in the literature and examples include nuclear
factor-κB (NFκB) and hepatocyte nuclear factor-4α circuits.70 71

Within the NFκB circuitry, transient activation of Src oncopro-
tein triggers an NFκB mediated inflammatory response by
downregulating let-7a and upregulating its direct target interleu-
kin (IL)-6.70 This forms a stable positive feedback circuit across
many cell divisions.70 Similarly the hepatocyte nuclear factor-4α
circuit consists of miR-124, IL6R, STAT3, miR-24 and miR-629
and is essential for liver development and hepatocyte func-
tion.71 Several other examples of miRNAs involved in GRNs
are summarised in a recent review.72

Regulation of miRNAs through epigenetic mechanisms
Emerging evidence suggests miRNA expression can be regulated
by epigenetic mechanisms such as DNA methylation, histone
modifications and circular RNAs (circRNAs).73–76 DNA methy-
lation, the addition of methyl groups at CpG islands by DNA
methyltransferases (DNMTs), is associated with transcriptional
repression. Similarly, acetylation or deacetylation of histones
may alter transcriptional activity.77 The recently established
EpimiR database has collected 1974 regulations between 19
types of epigenetic modifications and 617 miRNAs across seven
species.78 Aberrant DNA methylation of miRNAs has been
demonstrated in various cancers, including lymphoid, gastric

Figure 1 Pubmed microRNA (miRNA) citations in Gastroenterology and
Inflammatory Bowel Diseases (IBD). Search terms used were as follows:
Gastroenterology: (miRNA OR MicroRNA) AND (Gastroenterology OR IBD
OR Inflammatory Bowel Disease OR Crohn’s Disease OR Ulcerative Colitis
OR Colon OR Stomach OR Intestine OR Oesophagus OR Oesophagus OR
Rectum) NOT mirna[author]; IBD: (miRNA OR MicroRNA) AND (IBD OR
Inflammatory Bowel Disease OR Crohn’s Disease OR Ulcerative Colitis)
NOT mirna[author]; miRNA: (miRNA OR MicroRNA) NOT mirna[author];
Each search was run for print publication dates for each year from 2001 to
2014. Citations were normalised to the total number of Pubmed indexed
articles during the same time period (nb, the term microRNAwas
introduced in 2001).
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and colorectal malignancies.79–81 Up to 10% of miRNAs are
tightly controlled by DNA methylation as seen in cell lines defi-
cient in DNMT1 and DNMT3b.82 Time-dependent miRNA
regulation has also been described. In murine models, partial
hepatectomy results in downregulation of miR-127 as early as
3 h post partial hepatectomy with significant downregulation
seen at 24 h.83 DNA methylation has also been shown to alter
chromatin signatures and influence miRNA expression in
cancer.73 Within the context of IBD, our group has studied

epigenome-wide whole-blood DNA methylation profiles in
treatment-naïve children with CD and healthy controls using
the Ilumina 450 K platform.7 Sixty-five differentially methylated
CpG sites achieving epigenome-wide significance were identi-
fied. The most significantly differentially methylated region in
patients with CD involves the transcription start site for
miR-21. Hypomethylation of the miR-21 locus in cases corre-
lated with increased primary miR-21 expression in leucocytes
and in inflamed intestinal mucosa.7

Figure 2 miRNA biogenesis and regulation. (A) Processing begins in the nucleus where primary miRNA transcripts (pri-miR) are transcribed by
RNA polymerase II or RNA polymerase III.21 22 (B) Nuclear cleavage of pri-miRNA is performed by a protein complex consisting of the RNAse-III-type
enzyme Drosha and DGCR8 (DiGeorge critical region 8), which generates a 60–70 nucleotide sequence called pre-miRNA. Drosha cleavage generates
a 2 nucleotide 3’ overhang which appears to be a key biogenesis step.23 DCGR8 acts as an anchor on the stem loops of the target miRNA,24

allowing Drosha to correctly position on the pri-miRNA.25 Mirtrons are similar in structure but do not undergo Drosha/DGCR8 processing. (C) pre-
miRNA is transported from the nucleus to the cytoplasm by the Exportin-5 (Exp5) — RanGTP complex. Correct binding of the double stranded stem
and 3’ regions to the RanGTP structure stabilises the miRNA, preventing degradation and facilitating the correct transport of pre-miRNA.26–28

(D) Final cleavage of the hairpin loop is performed by Dicer (RNAse III like enzyme) with co-factors: Tar RNA binding protein (TRBP); and protein
activator of double-stranded RNA-dependent protein kinase (PACT). (E) The remaining 22 nucleotide RNA duplex is incorporated with Ago proteins,
forming a pre-RNA induced silencing complex (pre-RISC). The duplex is separated within Ago proteins into a single stranded mature miRNA and its
passenger strand. The mature miRNA strand is retained to form RISC which is eventually destined for mRNA repression/cleavage while its passenger
strand undergoes degradation.29 30 miRNA recognises its target via 6-8 nucleotide sequence at the 5’ end of the miRNA however the binding site
can vary. Examples of regulatory elements in miRNA biogenesis. Transcriptional regulation Transcription factors can influence miRNA
expression by binding directly to promoter elements. Examples include c-Myc binding and upregulating miR-17–92 cluster and p53interaction with
miR-34.31–34 miRNAs and argonaute (Ago) proteins as regulators mature miRNAs can act as regulators of miRNA processing either as an auto-
regulatory loop or for other miRNAs (e.g. the biogenesis of let-7).35 RNA editing Once transcribed, miRNAs can undergo editing, which can
influence miRNA target specificity.36–39 RNA editing occurs in ∼6% of human miRNAs with some studies reporting higher levels of RNA editing
(50%).37 40 RNA editing is miRNA gene- and tissue-specific (e.g A to I edited members of the miR-376 family specifically within the human
cortex).38 40 Drosha/DGCR8 The Drosha-DGCR8 complex can undergo post-transcription self-regulation, which allows circulatory negative feedback
once sufficient microprocessor activity is available.41–43 Cross-regulation between Drosha and DGCR8 may assist in homeostatic control of miRNA
biogenesis.42 miRNA processing factors Specific proteins can either directly or indirectly up-regulate or downregulate the maturation of select
miRNAs. A nucleo-cytoplasmic protein with dual functionality is heterogeneous nuclear ribonucleoprotein A1 (hnRNP-A1) which facilitates nuclear
pri-miR-18a processing.44–47 Physical activity - Physiological changes such as exercise can induce modifications in the miRNA biogenesis
machinery. Following 3 hours of endurance exercise in an untrained male, there is upregulation of Drosha, Dicer and Exp5 mRNA levels.48

DNA damage - DNA damage can promote post transcriptional processing of primary and precursor miRNAs which play a role in the initiation,
activation and maintenance of the DNA damage response.49 DNA damage accelerates nuclear export of pre-miRNAs via Exp5- nucleopore-Nup153
interaction.50 mRNA binding proteins - mRNA binding proteins bind to the 3-UTR elements of the target mRNA and can either enhance or reverse
translational repression by influencing mRNA-miRNA complex interaction.51 52
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There appears to be a complex interplay between DNA binding
proteins, chromatin modifications and miRNA expression.
miR-155 assists in the differentiation and cytokine expression of
Th17 cells as miR-155 deficient Th17 cells exhibit increased
expression of Jarid2 which actively recruits polycomb repressive
complex 2 to chromatin. Binding of polycomb repressive complex
2 to chromatin along with H3K27 histone methylation results in
downregulation of cytokines IL-9, IL-10, IL-22 and Atf3.84

Recently circRNAs have been identified as regulators of
miRNA expression. These endogenous RNAs can operate as

miRNA sponges and are abundant within the human transcrip-
tome.85 Hansen et al76 identified circRNA sponge for miR-7 as
a potent inhibitor of miR-7 activity that is abundant in the
mouse brain. circRNA sponge for miR-7 contains 70 highly
selective miRNA target sites, strongly associated with AGO pro-
teins and is highly resistant to miR-7 mediated destabilisation.
They also identified testis specific sex determining region Y (Sry)
circRNA as a miR-138 sponge indicating that the sponge effects
of circRNAs are a general phenomenon.

miRNA regulation

▸ miRNAs are an integral part of GRN and modulate gene
expression in response to cellular or environmental changes.

▸ Epigenetic mechanisms such as DNA methylation, histone
modifications and circRNAs regulate the expression of
miRNAs adding a layer of complexity to the regulation of
gene expression.

MIRNA AND THE IMMUNE SYSTEM
miRNAs are integral in differentiation, regulation and cell sig-
nalling, in the innate and adaptive immune system.86 87

Maladaptation within these processes may result in acute or per-
petuating inflammation, which characterises inflammatory disor-
ders including IBD. Here key findings of the role of miRNAs in
the innate and adaptive immune system are summarised, focus-
ing on the most extensively investigated pathways.

miRNAs and activation of the innate immune system
The innate immune system is the first defence against pathogens
and relies primarily on early antigen recognition and this is
initiated by pathogen associated molecular patterns. Pathogen
associated molecular patterns trigger extracellular receptors
termed toll-like receptors (TLRs) or intracytoplasmic nucleotide-
binding oligomerisation domain-containing protein (NOD)-like
receptors and promote downstream signalling cascades through
pathways including NFκB, mitogen activated protein kinase and
interferon (IFN) regulatory factors.88 miRNAs actively regulate
these processes.

NOD-like receptors
Most relevant within the context of IBD is NOD2, part of the
NOD-like receptors family. NOD2 has been the strongest single
genetic susceptibility locus in CD.89 The miRNA-NOD2 inter-
action has been studied and miRNAs including miR-192,
miR-122, miR-29 and miR-146a may be implicated in
IBD.9 90–92 The interaction of miR-192 and NOD2 may be rele-
vant in the pathogenesis of IBD as a SNP rs3135500 in the
30UTR region of NOD2 reduces the ability of miR-192 to inhibit
NOD2.92 Polymorphisms in NOD2 can also impair the ability of
dendritic cells (DCs) to express miR-29, resulting in exaggerated
IL-23 induced inflammation.9 miR-122 has also been shown to
target NOD2 expression upon LPS stimulation, albeit in a differ-
ent cell line (HT-29 cells).90 Finally, miR-146a may regulate
NOD2 derived gut inflammation in IBD and promote proinflam-
matory cytokines in MDP activated macrophages.91

Toll-like receptors
miRNAs have been shown to target a vast array of molecules
within the TLR signalling pathway.93 miR-146a/b and miR-155

Figure 3 Examples of miRNA circuits. Tsang and Milo describe two
distinct circuits, Type I and Type II that incorporate miRNAs in their
regulatory machinery.66 67 (A) In Type I circuits, upstream transcription
factors will positively coregulate miRNA and their target mRNA.66 One
such example is the repression of E2F1 by miR-17-5p, both of which
are activated by the transcription factor c-Myc.68 It has been suggested
that the function of such circuits is to define and maintain
target-protein homoeostasis, especially in cells that are ultrasensitive to
target mRNA abundance.66 (B) Type II circuits allow transcriptional
activation or repression (positive or negative feedback loop) of a target
gene by an upstream factor with associated synergistic miRNA
expression.66 If an mRNA is to be repressed, transcription factors will
downregulate the mRNA directly and also upregulate the relevant
miRNA. If however a mRNA is to be upregulated, this would occur
directly by the transcription factor with synergistic miRNA repression.
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are the most relevant miRNAs in this field and their important
regulatory activity is supported by their respective knockout
(KO) mice phenotypes.94 95 Mice deficient of miR-146a develop
autoimmune disorders, myeloid cell proliferation and tumori-
genesis while mice deficient of miR-155 display an impaired DC
function and are unable to mount an adaptive immune response
to pathogens.94 95 The induction of the miR-146 family and
miR-155 is nuclear factor κ light chain enhancer of activated B
cells (κκB) dependent and these miRNAs form negative feed-
back circuits to fine-tune the inflammatory response upon bac-
terial infection.96–99

While miR-146 targets MyD88 adaptor proteins: tumour
necrosis factor receptor associated factor 6 and IL-1 receptor-
associated kinase 1, miR-155 on the other hand targets signalling
proteins: suppressor of cytokine signalling 1 and TAK1-binding
protein 2.96 100 101 Cells use miR146 to attain tolerance to subin-
flammatory doses of LPS, however when exposed to proinflam-
matory doses of LPS, miR-155 is also activated to broadly limit
inflammation.102 The process of miR-146a expression appears
dynamic and during early phases of the inflammatory response in
macrophages, there is transient reversal of miRNA mediated
repression of inflammatory cytokines through AGO2 phosphor-
ylation.103 LPS stimulation of TLR4 also activates the regulatory
PI-3K/Akt circuit which consists of let-7e and miR-155 and its
targets TLR4 and suppressor of cytokine signalling 1.104

Macrophages deficient of Akt suppress let-7e and overexpress
miR-155 resulting in a hyper-responsive phenotype to
LPS.104 105 miRNAs have also been implicated in other infections
such as Pseudomonas aeruginosa infection promoting miR-302b
expression in order to limit the pulmonary inflammatory
response and BCG triggered miR-12 expression.106 107

It must be borne in mind that the implicated miRNAs in the
innate immune response are cell-specific. In human monocytes
and neutrophils, TLR4 activated NFκB induces the expression
of miR-9 however in murine macrophages, the NFκB feedback
circuit is governed by miR-210.108 109

Adaptive immune system
Within the immune system, an intricate network of signalling
facilitates maturation of the adaptive immune system. The appro-
priate development and function of these immune cells (T and B
cells) is crucial when distinguishing foreign antigens from self.
Recent studies have shown that miRNAs are involved in various
stages of Tcell and B cell maturation and activation (figure 4).

miRNAs and T cell regulation
The differentiation and maturation of T cells is influenced by
miRNAs (figure 4). Specific deletion of Dicer or Drosha in T
cell lineages results in aberrant differentiation and cytokine pro-
duction with a marked bias towards Th1 development and
IFN-γ production.132 133 During positive and negative selections
within the thymus gland, self-reactive T cells are first removed
(negative selection) before T cells with functional receptors are
selected (positive selection). The miR-181 family plays an
important role in this process by altering T cell receptor sensitiv-
ity and may also contribute to diminished vaccine responses
seen in the elderly.110 111

miRNAs and Th1 and Th2 differentiation
miRNAs contribute to Th1 and Th2 cell differentiation. Several
miRNAs including miR-146a, miR-29, miR-155, miR-17-92
cluster, miR-128 and miR-27b have been shown to influence
Th1 differentiation and function.112–115 Overexpression of
miR-155 influences CD4+ T cells to differentiate into Th1 cells

while deficiency in miR-155 shows a bias towards Th2 differen-
tiation.94 99 Similarly, miR-17-92 promotes Th1 differentiation
by upregulating IFN-γ production and suppressing regulatory
T cell (Treg) differentiation.116 Of particular interest is the role
of miR-21 expression in T cells. miR-21 has been shown to
promote Th2 cell differentiation and as described previously, its
dysregulation has been implicated in IBD.5 8 117

Several miRNAs have been shown to play a regulatory role by
targeting transcription factors known to be involved in Th1 cell
gene expression.114 These include miR-29 targeting T-bet and
eomesodermin, transcription factors known to regulate IFN-γ
production and miR-146a that targets signal transducer and acti-
vator transcription 1 in Treg cells, a transcription factor that
controls Treg mediated regulation of Th1 responses.113 114

miRNAs and Th17 differentiation
The Th17 pathway has been widely researched in the context of
IBD.134 Recent studies determining the effect of miRNAs on the
differentiation and function of Th17 pathway have identified
direct and indirect regulatory mechanisms. Using murine models
with experimental autoimmune encephalomyelitis, studies have
shown that miR-326, miR-10a, miR-155 directly regulate Th17
differentiation and/or function while miR-301a is an indirect
enhancer of Th17 differentiation.118–121 Of these miRNAs,
miR-155 seems relevant to IBD as it directly upregulates Th17
differentiation and indirectly influences the regulation of
pro-Th17 cytokines from DCs.121 122 Furthermore, miR-155 KO
mice are protected from dextran sulfate sodium(DSS) induced
experimental colitis compared with wild type mice.123 miRNAs
may also regulate hypoxia-induced Th17 differentiation by over-
expressing miR-210 and promoting a negative feedback circuit
with Hif1a, a key transcription factor of Th17 polarisation.124

miRNAs and T regulatory cells
Studies have identified the role of miRNAs in Treg cell develop-
ment and function by promoting the differentiation of CD4+ T
cells into Treg cells in the thymus and maintaining their immune
homoeostatic function.135 It has been shown in vivo that CD4+

T cells that fail to express miRNAs develop spontaneous auto-
immunity.135 Furthermore, conditional Dicer or Drosha deletion
in Foxp3+Treg cells can alter the expression of several Treg spe-
cific markers including Foxp3, resulting in early fatal auto-
immune disease.133 136 Several miRNAs including miR-155,
miR146a, miR-10a and miR-17-92 have been shown to maintain
Treg cell function by modulating different signalling path-
ways.100 113 125 126 miR10a in selective Treg cells assists in main-
taining high Foxp3 levels but does not influence the number or
phenotype of Treg cells.125 miR-155 has been shown to regulate
mature Treg cell homoeostasis via the IL-2 signalling pathway
while miR-146a regulates Treg cell function to limit inflamma-
tion.100 113 The miR17-92 cluster has also been implicated in
Treg cell function but these studies are conflicting. miR-17-92
Treg cell KO mice develop an exacerbated experimental auto-
immune encephalomyelitis,126 however Jiang et al showed that
certain miRNAs within this cluster such as miR17 and miR-19b
inhibit Treg cell differentiation and promote Th1 responses.116

miRNAs and other immune cells
miRNAs have been implicated in other immune cell maturation
such as B cells and T follicular helper cells. The miR-17-92
cluster helps regulate T follicular helper cell differentiation as
well as B cell maturation while other miRNAs such as miR-10a
and miR-181a have also been shown to regulate these pro-
cesses.119 127–131
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miRNAs and the immune system

▸ miRNAs play important roles in the development and
differentiation of the innate and adaptive immune system.

▸ The innate immune response to bacterial infection is
regulated by an intricate network of miRNA circuits that
fine-tune the inflammatory response.

▸ miRNA expression is highly cell specific and miRNA
dysregulation especially in Th17 cells has been implicated
in IBD.

MIRNA PROFILING IN IBD
Following numerous studies determining miRNA expression
profiles in human health and disease, researchers are now begin-
ning to explore the functional actions of miRNAs. The various
experimental techniques are used to investigate miRNAs and
have been reviewed recently.137 Early studies used quantitative
PCR (qPCR), following which microarrays have been used to
study miRNAs. Microarrays work by hybridisation of the
mature miRNA to complementary probe sequences immobilised
on a chip or beads, with a detection mechanism usually involv-
ing labelling of the 30 end of the miRNA.137 Most recently next
generation sequencing (NGS) has been used to study small

Figure 4 MicroRNAs (miRNAs) and the adaptive immune system. This diagram displays a developmental flow chart of the adaptive immune
system, mainly T cells. The miRNAs highlighted in black promote the differentiation and/or function of their respective T cell populations while those
highlighted in red are inhibitors of these processes. Cytokines released by each T cell subtype are also summarised.94 99 100 110–131 MHC, major
histocompatibility complex; Th, T helper cell; Tfh, T follicular helper cell; Treg, regulatory T cell; IL, interleukin; TNF, tumour necrosis factor; IFN,
interferon; TGF, transforming growth factor.
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RNAs. NGS is potentially advantageous over microarray techni-
ques as it provides greater coverage, demonstrates sequence
independence and has the potential to identify novel miRNAs.
Confirmatory techniques to validate these findings use standard
techniques such as qPCR and northern blotting.

Results from early studies exploring the profile of miRNAs
expressed in tissues of patients with IBD have been somewhat
conflicting and difficult to interpret. Many of the miRNA
related IBD studies have been underpowered and the need for
large cohorts to perform well-powered studies has been demon-
strated by the Cancer Genome Atlas consortia.138 There has
also been a lack of uniformity of the comparator group, with
controls consisting of healthy individuals in some studies and
‘symptomatic control’ patients in others and furthermore many
of these studies used different methods to normalise miRNA
data. There has been difficulty identifying suitable housekeeping
genes as a reference for qPCR. Microarray and NGS studies
have used different techniques for normalisation; either

normalising against total miRNA or using approaches such as
scaling and quantile normalisation.139–141

Other specific issues include difficulties deciphering whether
differentially expressed miRNAs are causal, a consequence of
disease or related non-specifically to inflammation, and miRNA
levels may vary with disease duration and can be influenced by
therapy.142 143 Moreover, every cell type possesses its own
unique epigenetic signature therefore interpreting the relevance
of miRNAs detected in heterogeneous samples (eg, whole
blood, intestinal biopsies) is challenging and complicated by the
fact that many miRNAs can target the same gene. Recent publi-
cations have demonstrated a shift in focus from generating
exhaustive tissue and blood miRNA screens (see online supple-
mentary table S1) to carefully designed functional experiments
that elaborate actions of individual miRNAs in known patho-
genetic pathways in IBD as implicated by GWAS. The most con-
sistent evidence to date links miRNAs and autophagy in CD and
in NOD2-induced Th17-mediated disease (table 1).

Table 1 Functional studies on micro RNAs (miRNAs)

First
author Study model miRNA of interest

mRNA/
pathway
target Findings

Nguyen144 AIEC infection in T84 cells and mouse
enterocytes. Translational studies in ileal CD
biopsies

miR-30C and
miR-130A

ATG5
ATG16L1

Adherent Escherichia coli upregulate miRNAs, reduce levels of ATG5 and
ATG16L1 and inhibit autophagy

Zhai145 Jurkat T cells
Colonic epithelial cells

miR-142-3p ATG16L1 Reduced ATG16L1 mRNA and protein levels, regulating autophagy in CD.

Lu146 HCT116, SW480, HeLa and U2OS cell lines.
Colonic biopsies from CD and healthy
controls

miR106B, miR93 ATG16L1 Reduced levels of ATG16L1 and autophagy

Brest10 HEK-293 cells
Colonic biopsies

miR-196 IRGM A risk variant of IRGM alters the binding site for miR-196 and causes
deregulation of IRGM-dependent xenophagy in CD

Brain9 Dendritic cell line, miR-29 KO murine models miR-29 IL-12p40 (direct
target)
IL-12p19
(indirect target)

NOD2 induces miR-29 release and limits IL- 23 release
NOD2 polymorphism alters the expression of miR-29 and contributes to
pathogenesis in CD.

Xue147 IL-10 KO mice
MyD88 KO mice
RAG KO mice
Murine dendrite cells

miR-10a IL-12/IL-23p40 miR-10a expression is regulated by the intestinal microbiota and targets
the Th17 pathway. This miRNA may play a role in intestinal homoeostasis

Koukos148 HCT-116 colonocyte cells, murine models
and colonic biopsies from patients with UC

miR-124 STAT3 Downregulation of miR-124 results in proinflammatory response in UC

Shi5

Yang149

miR-21 KO DSS model and wild type mouse
models
Caco-2 cells, colonic biopsies from UC and
healthy controls

mir-21 RhoB miR-21 is overexpressed in inflammation and tissue injury. miR-21 KO
improves survival in DSS colitis mouse model
Targeting RhoB impairs the tight junction integrity and decreases
transepithelial resistance and increases inulin permeability

Nata150 IL-10 deficient mice miR-146b siah2 miR-146b improves intestinal inflammation and epithelial barrier by
activating NFκB

Chuang92 HCT116 colonic epithelial cells miR-192, miR-495,
miR-512, miR-671

NOD2 Downregulates NOD2 expression, suppresses NFκB, inhibits IL8 and
CXCL3 expression

Chen151 Intestinal epithelial cells
Intestinal biopsies

miR-200b TGFβ miR-200b promotes the growth of intestinal epithelial cells by inhibiting
epithelial-mesenchymal transition via TGFβ

Feng152 UC intestinal biopsies
HCT116 cells
HT29 cells

miR-126 IκBα Promotes NFκB mediated inflammation by targeting IκBα, a known
inhibitor of the NFκB pathway.

Nguyen153 Caco2-BBE cells
Mouse epithelial cells
Colonic CD tissues

miR-7 CD98
expression

miR-7 regulates the expression of CD98. CD98 expression upregulated
and miR-7 decreased in actively inflamed CD tissues.

Singh123 miR-155 KO mice miR-155 Th17 pathway miR-155 KO mice models and demonstrated that these mice are
protected from experimental colitis compared with wild type mice.

Wu8 miR-21 KO TNBS and T cell transfer model of
colitis
miR-21 KO DSS colitis model

miR-21 Th1 pathway miR-21 KO results in reduced DSS induced colitis but exacerbated
inflammation in TNBS and T cell transfer model of colitis

AIEC, adherent invasive Escherichia coli; CD, Crohn’s disease; DSS, dextran sulfate sodium; IL, interleukin; IRGM, immunity related GTPase family M protein; KO, knockout; miR,
microRNA; NFκB, nuclear factor-κB; NOD2, nuclear oligomerisation domain-containing protein 2; TGFβ, transforming growth factor β; TNBS, trinitrobenzene sulfonic acid.
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miRNA profiling in IBD

▸ There is a need to perform large-scale multicentre miRNA
profiles in IBD with a well-defined ‘healthy control’
population using NGS techniques.

▸ miRNA levels can vary with disease duration and therapies.
▸ Every cell possesses its own epigenetic signature, therefore

understanding the relevance of miRNA profiles in whole
blood and intestinal biopsies can be challenging.

FUNCTIONAL STUDIES IN IBD
miRNAs and autophagy in CD
Autophagy is a cellular process that involves self-digestion of
unwanted materials such as damaged mitochondrial products
(mitophagy) and pathogenic microbes (xenophagy). A process
such as xenophagy requires the coordinated action of a multi-
tude of proteins including, vimentin, NOD2, immunity related
GTPase family M protein (IRGM) and a multiprotein complex
which includes ATG16L1 and ATG5–ATG12.154 155 In under-
standing molecular signalling and its effect on autophagy,
several groups have investigated the role of miRNAs in these
processes (figure 5).

During periods of starvation or hypoxia, mammalian target of
rapamycin is inhibited within cells, activating autophagy.
Hypoxia-induced autophagy results in upregulation of miR-155
that targets multiple components of mammalian target of rapa-
mycin signalling.156 All genes currently described in the regula-
tion of different stages of autophagy are influenced by
miRNAs.157 Several autophagy genes have also been associated
with susceptibility to CD, notably IRGM and ATG16L1.158

Interestingly, autophagy regulates miRNA production by target-
ing miRNA-processing enzymes Dicer and AGO2 through the
autophagy receptor nuclear dot protein 52 kDa and
gem-associated protein 4.159 Future challenges include under-
standing the genetic control of miRNA biogenesis including its
own transcriptional activators and repressors.

Immunity related GTPase family M protein
A common exonic synonymous SNP (c.313C>T) in IRGM is
associated with CD.160 Although this SNP does not alter the
IRGM protein sequence, it is located in the ‘seed’ region where
mRNA and miRNA form a RNA induced silencing complex.10

Further analysis revealed that this SNP altered the binding site
for miR-196. miR-196 was also shown to be overexpressed in
inflamed tissues of patients with CD suggesting that this defect-
ive miRNA-mRNA interaction deregulates IRGM-dependent
xenophagy in CD.10

ATG16L1
GWAS identified ATG16L1 polymorphism (T300A) as a risk
variant in CD. Further studies revealed that this variant results
in ineffective xenophagy of pathogens such as Salmonella typhi-
murium.161 Several studies have identified miRNAs that target
ATG16L1, although each study associates a different set of
miRNAs which may relate to miRNA cell line specificity. In
HeLa cell lines, adherent invasive Escherichia coli infection
results in overexpression of miR-93 and miR106B and downre-
gulation of ATG5 and ATG16L1 thereby disrupting the autop-
hagy pathway and bacterial clearance.146 In adherent invasive
Escherichia coli infected T84 cells however, miR-30C and

miR-130A were upregulated.144 Both studies were able to repli-
cate their findings in endoscopic biopsies from patients with
CD. Finally, miR-142-3p has also been shown to target
ATG16L1 and autophagy using a different cell line.145

Th17 pathway
Th17 driven inflammation plays an important role in IBD and
studies have shown how miRNAs are used by DCs to regulate
the inflammatory response. Brain et al9 demonstrated that
NOD2 mediates its effects through miRNAs in DCs, in particu-
lar miR-29. The gene most strongly regulated by miR-29 is
IL12B (encoding IL-12/23 p40) while IL23A (encoding IL-23
p19) is indirectly targeted through suppression of its transcrip-
tion factor ATF2 and mice deficient of this miRNA develop a
more severe Th17 driven colitis on DSS exposure.9 Microbiota
can also impact on DC miRNA expression. In vivo models have
demonstrated the commensal bacteria can negatively regulate
miR-10a in DCs.147 Furthermore miR-10 directly targets IL-12/
23p40 to limit Th17 driven inflammation and the expression of
this miRNA may be regulated in order to maintain intestinal
homoeostasis.147

Other inflammatory pathways
The role of the NFκB pathway in IBD has been well described
and studies have shown that this pathway is also regulated by
miRNAs.162 miR-126 promotes NFκB mediated inflammation by
directly targeting IκBα mRNA, an important inhibitor of NFκB
signalling pathway. These findings were replicated in colonic
biopsies in patients with active UC.152 Conversely, NFκB has also
been shown to play an anti-inflammatory role in IBD as demon-
strated by the differential expression of miR-146b in IL-10 defi-
cient mice models.150 Administering miR-146b vectors
intraperitoneally in DSS colitis mice ameliorated intestinal
inflammation via activation of the NFκB mediated pathway.150

Other pathways that have been studied include signal trans-
ducer and activator transcription 3 (STAT3) and acetylcho-
line.148 163 164 Koukos et al148 demonstrated downregulation of
miR-124 and upregulation of STAT3 in colonic biopsies of
patients with active UC. These findings were translated in cell
lines and murine experimental models suggesting a role of
STAT3 expression in promoting intestinal inflammation. Finally,
vagal secretion of acetylcholine suppresses peripheral inflamma-
tion by interrupting cytokine production and miR-132 has been
shown to target acetylcholine esterase thereby potentiating anti-
inflammatory effects.164

Epithelial barrier integrity
Dysfunctional epithelial barrier has been implicated in the
pathogenesis of UC.165 166 GWAS data demonstrated IBD asso-
ciated genes that play a role in maintaining intestinal epithelial
barrier integrity and examples include LAMB-1 that regulates
basement membrane stability and CDH-1 that regulates stability
of adherens junctions via E-cadherin.166 Recent studies have
investigated miRNAs in epithelial barrier function, in particular
miR-21 and miR-200B.5 149 151 Murine miR-21 KO models
with experimental DSS colitis survive longer and have less tissue
inflammation than wild type mice and this miRNA targets
Rhob, a target gene involved in regulating intestinal permeabil-
ity.5 149 Similarly miR-200b has been shown to help maintain
epithelial barrier integrity by targeting transforming growth
factor β1 and inhibiting epithelial-mesenchymal transition, a
process that promotes loss of intestinal epithelial cells and con-
tributes to the pathogenesis in IBD.151
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miRNA studies in IBD

▸ miRNAs have been shown to regulate several pathways
involving susceptibility loci found in IBD by GWAS.

▸ Recent data implicate miRNAs in the dysregulation of
autophagy and Th17 signalling in CD.

▸ Increased expression of miR-21 is the most consistently
replicated finding and represents a novel therapeutic target.

▸ miRNAs have also been shown to regulate intestinal barrier
integrity in UC.

TRANSLATION TO CLINICAL PRACTICE: LESSONS LEARNED
FROM OTHER DISEASES
miRNAs as disease biomarkers
Insights from contemporary cancer research highlight the excit-
ing potential of miRNAs as biomarkers. Research in this area
was stimulated by the initial finding that miRNA profiles can
accurately differentiate between different cancer lineages and
successfully classify poorly differentiated cancers based on tissue
profiling.167 In 2008, miRNAs were also discovered to be
present in serum in a cell-free state, sparking excitement about
their potential use as non-invasive biomarkers.168–170

Extracellular miRNAs have now been found in most biological
fluids including serum, urine, tears, saliva and breast
milk.171 172 Packaged in vesicles consisting of microparticles,
lipoproteins or RNA binding proteins, these miRNAs are very
stable and protected from degradation.168 Their profiles have

been studied in various diseases including cardiovascular dis-
eases, cancer and neurological diseases.173–175

Despite the optimism that miRNAs may represent robust bio-
markers, the results should be treated with some circumspection;
recent reviews showed that up to 58% (n=47) of the reported
tumour related miRNAs are not disease specific.176 Only 33% of
the reported miRNAs in non-neoplastic diseases (n=139) were
deemed biologically plausible and represented non-ubiquitous
miRNA expression in disease-appropriate cell types.177

The therapeutic application of miRNA modulation
miRNA related therapeutic intervention may involve either
miRNA antagonists or miRNA mimics. Antagomirs, an example
of miRNA antagonists, can be applied to allow gain of function
within diseased states by introducing a chemically modified RNA
that binds to the active miRNA of interest to inhibit its activity
and rescue the repression of its target. Conversely miRNA
mimics are used to restore a loss of function by the introduction
of miRNAs into diseased cells to mimic a healthy cell state.178

Within the GI literature, there are several studies highlighting the
potential therapeutic application of specific miRNAs including
miR-155 and miR-210.123 124 Recently, miR-141 has been shown
to play a critical role in colonic leucocyte trafficking by targeting
CXCL12β. Treatment with pre-miR141protects mice against the
development of trinitrobenzene sulfonic acid and IL-10KO colitis.
In contrast, anti-miR141 aggravates trinitrobenzene sulfonic acid-
induced colitis through CXCL12β suppression.179

Several miRNA-based therapies are either in the preclinical
phase or the clinical trial phase, with ‘miravirsen’ miR-122 tar-
geting in HCV being the most developed therapy.180 miR-122 is

Figure 5 MicroRNAs (miRNAs) and autophagy (adapted with permission from Ventham et al, Gastroenterology). This diagram summarises the
influence of miRNAs within different components of autophagy. Altered sequence in the immunity related GTPase family M protein (IRGM) gene
results in an impaired binding site for miR-196.10 The consequent reduction in miR-196 activity results in IRGM upregulation and causes ineffective
bacterial clearance of adherent invasive Escherichia coli (AIEC) in the intestinal cells of patients with Crohn’s disease. ATG16L1 has also been shown
to be a target of a host of miRNAs. miR-106B and miR-93 repress ATG16L1 mRNA translation, thereby disrupting the autophagy pathway and
bacterial clearance of AIEC.146 miR-30C and miR-130A have also been shown to directly target ATG16L1 and ATG5.144 Similarly, miR-142-3p has
also been shown to negatively regulate ATG16L1 and autophagy.145 Finally, NOD2 has been shown to induce the expression of miR-29 to limit IL-23
release, indirectly influencing the Th17 pathway in human dendritic cell lines.9 Polymorphisms in NOD2 impair the ability to express miR-29 resulting
in exaggerated IL-23 induced inflammation. Recently, a set of miRNAs that directly target NOD2 expression, miR-192, miR-495, miR-512 and miR-
671 have also been described albeit in a different cell line (colonic epithelial HCT116 cells).92

512 Kalla R, et al. Gut 2015;64:504–517. doi:10.1136/gutjnl-2014-307891

Recent advances in basic science

group.bmj.com on July 19, 2015 - Published by http://gut.bmj.com/Downloaded from 

http://gut.bmj.com/
http://group.bmj.com


highly liver specific and well conserved across human and other
vertebrate species.181 182 The interaction between HCV and
miR-122 is intriguing. The survival and replication of HCV
RNA within the liver is propagated by miR-122 through two
binding sites at the 50 UTR of the HCV genome.183 Inhibiting
this miRNA results in viral suppression, identifying it as a
potential therapeutic target in HCV infection.183 Its antiviral
effects have been demonstrated across all HCV genotypes.184

Data from the first Phase 2a clinical trial using miravirsen for
the treatment of HCV (genotype 1) in 36 treatment-naïve
patients with chronic HCV demonstrated dose-dependent
reductions in viral RNA levels with no evidence of viral resist-
ance or adverse events during an 18-week follow-up period.180

Combination therapies that include miravirsen with other
known agents such as telaprevir and ribavirin are also currently
in Phase 2 clinical trials.185 Several other miRNA therapies in
development have been summarised in a recent review.186

Challenges to therapeutic translation
There are several issues associated with miRNA therapeutics.
First, there appears to be functional redundancy exhibited by
miRNAs. Studies have shown that genetic deletion of miRNAs
does not alter phenotypes or disease processes nor does it
result in lethality in the vast majority of miRNAs. For some
miRNAs that exist within ‘families’, this may be explained by
intrafamilial redundancy however for others this may repre-
sent target sharing by several distinct miRNAs.187 188

Temporary inhibition of miRNAs however seems to have an
effect, as shown by the inhibition of miR-21.189 190 The dis-
crepancy in effect between permanent deletion and temporary
inhibition of miRNAs may be a result of ‘off-target’ influences
or could be explained by adaptive compensation by cells to
chronic loss of functional miRNAs over time. Interestingly
miRNAs may be particularly important under conditions of
stress, such that miRNA deficient developmental phenotypes
in controlled laboratory environments may not always be
expected.191 192

Uptake of miRNAs beyond the target organ poses a potential
challenge when developing miRNA therapies aimed at overex-
pressing miRNA. For example miR-26a suppresses hepatocellu-
lar carcinoma but has also been shown to have pro-oncogenic
properties in glioma formation by repressing its target, phos-
phatase and tensin homolog.62 193 Second, miRNA-based drug
delivery to the relevant cells must take into account the high
rates of degradation by RNAses in blood.194 Finally, owing to a
wide repertoire of several target genes, each miRNA-based
therapy has the potential to cause varied side effects. Examples
include germ line deletion of the oncogenic miR-17-92 cluster
resulting in skeletal and growth defects in humans.195 As such
the long-term inhibition of target miRNAs must be rigorously
tested. Studies have shown that although short-term inhibition
of miR-122 has beneficial effects on circulating cholesterol syn-
thesis and repressing HCV replication in the liver, long-term
inhibition of miR-122, as seen in KO mice models, results in an
age-dependent increase in hepatocellular carcinoma and steato-
hepatitis.196 197 These studies further emphasise the need to
rigorously test short-term and long-term side effects of
miRNA-based therapies.195

Delivery of miRNA therapies to their target organ has also been
difficult. While antagomirs can be delivered systemically, the deliv-
ery of miRNA mimics has been challenging, similar to the difficul-
ties encountered with small interfering RNA therapeutics. As
single RNA strands are >10 times less effective in vitro and in
vivo, miRNA mimics are delivered as synthetic duplexes.198 199

There are however several issues that should be highlighted with
this conformation. As mentioned earlier, cellular uptake can occur
even in tissues that do not express the relevant miRNA, potentiat-
ing undesired effects. In addition, these RNA duplexes can also
stimulate the innate immune system through TLRs.200 Finally, the
passenger strands of these duplexes can incorporate themselves
into miRNA induced silencing complexes and act as antagomirs
with undesired side effects. Improvements in delivery strategies
and RNA chemistries may combat some of these issues and
miRNA replacement therapies for cancer using miRNA mimics
have advanced to Phase 1 clinical trials.201 202

There has also been much interest in studying innovative
methods to deliver synthetic miRNAs. Studies have used lenti,
adeno or adeno associated virus vectors to restore activity,
however delivery using viral vectors certainly poses safety con-
cerns.62 203–205 The mechanisms of extracellular miRNAs pack-
aged in vesicles are also being studied. Examples include
exosomal delivery of small interfering RNAs to the mouse brain
by systemic injection and exosomal delivery of let-7a to target
epidermal growth factor receptor in RAG (−/−) mice.206 207

Translational application of miRNAs

▸ There are emerging data from human diseases studying
miRNAs as novel biomarkers in diagnosing and predicting
disease course and response to therapy.

▸ miRNA-based therapeutic technologies have been restricted
by difficulties in delivery to the target organ in order to
minimise side effects.

▸ Several miRNA-based therapies are now in clinical or preclinical
trials with ‘miravirsen’ being the most developed therapy.

CONCLUDING REMARKS: THE IMMEDIATE RESEARCH AGENDA
The field of miRNA research has advanced dramatically with
strong data associating miRNAs in IBD, notably in functional
studies of autophagy and Th17 regulation. However in order to
understand the role of miRNAs in disease pathogenesis, transla-
tional studies that take into account their plasticity and cellular
specificity is critical. Novel miRNA biomarker discoveries are on
the horizon, with studies using the dynamic properties of
miRNAs to generate expression profiles in different stages of
IBD and disease phenotype, or in response to immunomodula-
tory therapy.

Studies are now exploring miRNA regulatory and extracellu-
lar transport biology with a view to devising novel therapeutic
targets that are cell specific and alter gene expression in target
cells. The in vivo application of miRNA-based therapies pack-
aged in genetically engineered extracellular vesicles provides a
glimpse of the future translational potential of miRNA-based
research in chronic inflammatory diseases.
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believe that both the timeframe and study
design imply a major negative effect on
the external validity of this study.

First of all, the long-term risk for CRC
is assessed after an initial screening sig-
moidoscopy performed between 1999 and
2001. As acknowledged by the authors,
around this time, awareness of the neoplas-
tic potential of SPs was not yet widespread
and the general quality of colonoscopy
was inferior compared with current prac-
tice. Therefore, many large SPs will prob-
ably not have been detected and, if
detected, might not have been reported.

Second, only those individuals with
an adenoma or a large SP in the rectosig-
moid were invited for full colonoscopy.
Therefore, all large SPs in the right-sided
colon in patients without relevant distal
lesions were not detected. As a result, only
0.8% of participants were identified with
at least one large SP. In a recent study, a
prevalence rate of 2.7% was described in a
similar, average risk-patient population.2

In this cohort, 1.1% of patients were diag-
nosed with at least one large SP in the
right-sided colon without a synchronic
adenoma or large SP in the distal colon
(unpublished data). Analyses in the study
of Holme et al are therefore performed on
a minority of patients with large SPs
making the outcome of this study unreli-
able. Since CRCs arising via the serrated
neoplasia pathway are most often
described in the right-sided colon, external
validity seems even more compromised.3

Although providing unique data, the
analysis concerning the natural course of
large SPs seems underpowered. Analyses
were performed on 23 detected but unre-
sected large SPs. In a majority of cases,
retrospectively collected data of the first
follow-up colonoscopy were used to
assess the behaviour of these lesions. In

total, eight out of 23 lesions would have
disappeared but these might as well have
been missed during follow-up colonos-
copy performed by non-expert endosco-
pists not aware of the significance of
serrated lesions. Since no tattoo was
placed next to the unresected polyp, it is
unclear if endoscopists have evaluated the
same lesion at follow-up colonoscopy.
One patient with an unresected large SP
developed CRC in another segment,
while CRC developed in three patients in
whom large SPs were detected at initial
colonoscopy. Given the fact that all aden-
omas were removed in these patients, the
CRC might also have resulted from
missed SPs as well.
Studies like the one performed by

Holme et al are very important to gain a
better understanding about the actual risk
of SPs and the authors have tried to
enhance the small amount of knowledge
on this subject. However, only a prospect-
ively designed study with expert endosco-
pists and structured colonoscopy reports
will help resolve the uncertainty about
this topic. Ethical considerations will have
to be taken into account before such a
study could be established.
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